Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Silicon nitrides characteristics

Self-baking electrodes, 12 305, 755 Self-bonded reaction-sintered silicon nitride, 17 210, 211 Self-catalyzed polyols, 25 464 Self-cleaning materials, 22 108-127 problems and outlook for, 22 123-124 surface characteristics of, 22 108-109... [Pg.828]

A cross-sectional schematic of a monolithic gas sensor system featuring a microhotplate is shown in Fig. 2.2. Its fabrication relies on an industrial CMOS-process with subsequent micromachining steps. Diverse thin-film layers, which can be used for electrical insulation and passivation, are available in the CMOS-process. They are denoted dielectric layers and include several silicon-oxide layers such as the thermal field oxide, the contact oxide and the intermetal oxide as well as a silicon-nitride layer that serves as passivation. All these materials exhibit a characteristically low thermal conductivity, so that a membrane, which consists of only the dielectric layers, provides excellent thermal insulation between the bulk-silicon chip and a heated area. The heated area features a resistive heater, a temperature sensor, and the electrodes that contact the deposited sensitive metal oxide. An additional temperature sensor is integrated close to the circuitry on the bulk chip to monitor the overall chip temperature. The membrane is released by etching away the silicon underneath the dielectric layers. Depending on the micromachining procedure, it is possible to leave a silicon island underneath the heated area. Such an island can serve as a heat spreader and also mechanically stabihzes the membrane. The fabrication process will be explained in more detail in Chap 4. [Pg.11]

The main goal of another microhotplate design was the replacement of all CMOS-metal elements within the heated area by materials featuring a better temperature stability. This was accomplished by introducing a novel polysilicon heater layout and a Pt temperature sensor (Sect. 4.3). The Pt-elements had to be passivated for protection and electrical insulation, so that a local deposition of a silicon-nitride passivation through a mask was performed. This silicon-nitride layer also can be varied in its thickness and with regard to its stress characteristics (compressive or tensile). This hotplate allowed for reaching operation temperatures up to 500 °C and it showed a thermal resistance of 7.6 °C/mW. [Pg.108]

Progress in the design and fabrication of high-quality optical microresonators is closely related to the development of novel optical materials and technologies. The key material systems used for microresonator fabrication include silica, silica on silicon, silicon, silicon on insulator, silicon nitride and oxynitride, polymers, semiconductors such as GaAs, InP, GalnAsP, GaN, etc, and crystalline materials such as lithium niobate and calcium fluoride. Table 2 smnmarises the optical characteristics of these materials (see Eldada, 2000, 2001 Hillmer, 2003 Poulsen, 2003 for more detail). [Pg.44]

Table 10 summarises all methods for the densification of Si3N4 used at present. The resulting Si3N4 ceramics classified according to the densification routes are also listed together with several remarks on manufacturing characteristics, properties and applications. For comparison with the sintered qualities, information on reaction bonded silicon nitride ceramics are also included but will be treated in more detail in Sect. 8. [Pg.82]

Guijt et al. [69] reported four-electrode capacitively coupled conductivity detection in NCE. The glass microchip consisted of a 6 cm etched channel (20 x 70 pm cross-section) with silicon nitride covered walls. Laugere et al. [70] described chip-based, contactless four-electrode conductivity detection in NCE. A 6 cm long, 70 pm wide, and 20 pm deep channel was etched on a glass substrate. Experimental results confirmed the improved characteristics of the four-electrode configuration over the classical two-electrode detection set up. Jiang et al. [71] reported a mini-electrochemical detector in NCE,... [Pg.100]

FIGURE 3.6. (a) Cross-sectional schematics of a silicon wafer with a nanopore etched through a suspended silicon nitride membrance. SAM is formed between sandwiched Au eletrodes in the pore area (circled), (b) I(V) characteristics of a Au-2 -amino-4-ethynylphenyl-4-ethynylphenyl-5 -nitro-1 -benzenethiolate-Au (chemical structure shown below) molecular junction device at 60 K. The peak current density is 50 A/cm2, the NDR is 2400 pQ. cm2, the peak-to-valley ratio is 1030 1. [Adapted from Ref.30 Chen el al., Science 286, 1550-1552 (1999).]... [Pg.50]

This chapter describes the preparation and examination of ceramic matrix composites realized by the addition of different carbon polymorphs (carbon black nanograins, graphite micrograins, carbon fibers and carbon nanotubes) to silicon nitride matrices. In the following sections, structural, morphological and mechanical characteristics of carbon-containing silicon nitride ceramics are presented. [Pg.515]

This approach was successfully used in modeling the CVD of silicon nitride (Si3N4) films [18, 19, 22, 23]. Alternatively, molecular dynamics (MD) simulations can be used instead of or in combination with the MC approach to simulate kinetic steps of film evolution during the growth process (see, for example, a study of Zr02 deposition on the Si(100) surface [24]). Finally, the results of these simulations (overall reaction constants and film characteristics) can be used in the subsequent reactor modeling and the detailed calculations of film structure and properties, including defects and impurities. [Pg.469]

In the present chapter, we will turn our attention to films deposited by thermal CVD that are either dielectrics or semiconductors. There are, as one would expect, many films that can be deposited by this technique. In addition, there are many gaseous reactants that one can use to create each film, the choice depending on the film characteristics desired. Rather then attempt to catalogue all of the possible films and reactants, we will choose instead to focus on silicon dioxide, silicon nitride, polysilicon, and epitaxial silicon as the films of interest. At the same time, we will only look at those reactant gases that have been used for integrated circuit manufacture. An excellent survey of the film types that can be deposited by CVD and the many reactants that have been used to obtain them has been given by Kern.1... [Pg.66]

Figure 1 Silicon nitride film characteristics as a function of relative NH3 concentration in reactant flow.3 Reprinted by permission of the publisher, The Electrochemical Society, Inc. Figure 1 Silicon nitride film characteristics as a function of relative NH3 concentration in reactant flow.3 Reprinted by permission of the publisher, The Electrochemical Society, Inc.
Earlier, we reviewed silicon dioxide (thermal) films deposited with added phosphorus to serve as a getter for mobile ion impurities, as a final passivation film. Plasma-enhanced silicon nitride can also be doped with phosphorus.6 Some of the film characteristics have been reviewed, and it was found that the films with 2 to 3% P had the best electrical quality. No measurements of stress or H2 content were reported, so it is not clear that these would be use-able films. [Pg.129]

Within the past decade, research on the development of new Si3N4 compositions has greatly intensified. These efforts have resulted in a proliferation of new synthetic procedures. Preparative routes have been developed with increasing emphasis on the control of purity and physical properties. Silicon nitride powders, fibers, coatings, and composites each have their own characteristic requirements, which can dictate the choice of a particular route (i). [Pg.608]


See other pages where Silicon nitrides characteristics is mentioned: [Pg.851]    [Pg.281]    [Pg.205]    [Pg.291]    [Pg.164]    [Pg.167]    [Pg.360]    [Pg.9]    [Pg.49]    [Pg.82]    [Pg.34]    [Pg.38]    [Pg.52]    [Pg.490]    [Pg.514]    [Pg.519]    [Pg.120]    [Pg.511]    [Pg.88]    [Pg.90]    [Pg.100]    [Pg.221]    [Pg.320]    [Pg.322]    [Pg.322]    [Pg.416]    [Pg.41]    [Pg.46]    [Pg.185]    [Pg.245]    [Pg.247]   
See also in sourсe #XX -- [ Pg.328 ]




SEARCH



Silicon nitride

© 2024 chempedia.info