Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Silica-aluminas acidic sites

The titration of silica-alumina acid sites with neodymium oxide is clearly seen in Figure 4. The relative acid strength, as estimated by the 2,3DMB2/4MP2 ratio during 2MP2... [Pg.566]

The relationship between the two catalytic components is quite complex. Interactions between the support and the hydrogenation component can alter this relationship. For example, Larson et- al. (6) showed that, with platinum on silica-alumina, a selective adsorption of platinum by acid sites causes a reduction in catalyst acidity. Similarly, nickel reacts with the acid sites on silica-alumina forming nickel salts of the silica-alumina acid sites. It has been suggested (J) that one of the effects of sulfiding a nickel on... [Pg.34]

A recent infrared study of the interrelationship of silica-alumina acidity and activity for olefin polymerization was carried out by Mizuno et al. (134). They showed that Lewis acid sites on silica-alumina could be selectively poisoned with pyridine in an infrared cell by a three-step... [Pg.133]

The crystal structures and the surface chemistry of various aluminas have been discussed by Gates et al. (1979). Surface acidity is a most important property for both adsorption and catalysis. Unlike silicas, Lewis acid sites (i.e., sites that can... [Pg.149]

Many solids have foreign atoms or molecular groupings on their surfaces that are so tightly held that they do not really enter into adsorption-desorption equilibrium and so can be regarded as part of the surface structure. The partial surface oxidation of carbon blacks has been mentioned as having an important influence on their adsorptive behavior (Section X-3A) depending on conditions, the oxidized surface may be acidic or basic (see Ref. 61), and the surface pattern of the carbon rings may be affected [62]. As one other example, the chemical nature of the acidic sites of silica-alumina catalysts has been a subject of much discussion. The main question has been whether the sites represented Brpnsted (proton donor) or Lewis (electron-acceptor) acids. Hall... [Pg.581]

Still another type of adsorption system is that in which either a proton transfer occurs between the adsorbent site and the adsorbate or a Lewis acid-base type of reaction occurs. An important group of solids having acid sites is that of the various silica-aluminas, widely used as cracking catalysts. The sites center on surface aluminum ions but could be either proton donor (Brpnsted acid) or Lewis acid in type. The type of site can be distinguished by infrared spectroscopy, since an adsorbed base, such as ammonia or pyridine, should be either in the ammonium or pyridinium ion form or in coordinated form. The type of data obtainable is illustrated in Fig. XVIII-20, which shows a portion of the infrared spectrum of pyridine adsorbed on a Mo(IV)-Al203 catalyst. In the presence of some surface water both Lewis and Brpnsted types of adsorbed pyridine are seen, as marked in the figure. Thus the features at 1450 and 1620 cm are attributed to pyridine bound to Lewis acid sites, while those at 1540... [Pg.718]

Raman spectroscopy has provided information on catalytically active transition metal oxide species (e. g. V, Nb, Cr, Mo, W, and Re) present on the surface of different oxide supports (e.g. alumina, titania, zirconia, niobia, and silica). The structures of the surface metal oxide species were reflected in the terminal M=0 and bridging M-O-M vibrations. The location of the surface metal oxide species on the oxide supports was determined by monitoring the specific surface hydroxyls of the support that were being titrated. The surface coverage of the metal oxide species on the oxide supports could be quantitatively obtained, because at monolayer coverage all the reactive surface hydroxyls were titrated and additional metal oxide resulted in the formation of crystalline metal oxide particles. The nature of surface Lewis and Bronsted acid sites in supported metal oxide catalysts has been determined by adsorbing probe mole-... [Pg.261]

Acid-treated clays were the first catalysts used in catalytic cracking processes, but have been replaced by synthetic amorphous silica-alumina, which is more active and stable. Incorporating zeolites (crystalline alumina-silica) with the silica/alumina catalyst improves selectivity towards aromatics. These catalysts have both Fewis and Bronsted acid sites that promote carbonium ion formation. An important structural feature of zeolites is the presence of holes in the crystal lattice, which are formed by the silica-alumina tetrahedra. Each tetrahedron is made of four oxygen anions with either an aluminum or a silicon cation in the center. Each oxygen anion with a -2 oxidation state is shared between either two silicon, two aluminum, or an aluminum and a silicon cation. [Pg.70]

Zeolites as cracking catalysts are characterized hy higher activity and better selectivity toward middle distillates than amorphous silica-alumina catalysts. This is attrihuted to a greater acid sites density and a higher adsorption power for the reactants on the catalyst surface. [Pg.71]

Catalyst acid properties depend on several parameters, including method of preparation, dehydration temperature, silica-to-alumina ratio, and the ratio of Bronsted to Lewis acid sites. [Pg.131]

A conventional FCC unit can be an olefin machine with proper operating conditions and hardware. Catalysts with a low unit cell size and a high silica/alumina ratio favor olefins. Additionally, the addition of ZSM-5, with its lower acid site density and very high framework silica-alumina ratio, converts gasoline into olefins. A high reactor temperature and elimination of the post-riser residence time will also produce more olefins. Mechanical modification of the FCC riser for millisecond cracking has shown potential for maximizing olefin yield. [Pg.323]

This review will endeavor to outline some of the advantages of Raman Spectroscopy and so stimulate interest among workers in the field of surface chemistry to utilize Raman Spectroscopy in the study of surface phenomena. Up to the present time, most of the work has been directed to adsorption on oxide surfaces such as silicas and aluminas. An examination of the spectrum of a molecule adsorbed on such a surface may reveal information as to whether the molecule is physically or chemically adsorbed and whether the adsorption site is a Lewis acid site (an electron deficient site which can accept electrons from the adsorbate molecule) or a Bronsted acid site (a site which can donate a proton to an adsorbate molecule). A specific example of a surface having both Lewis and Bronsted acid sites is provided by silica-aluminas which are used as cracking catalysts. [Pg.294]

Acidic, high area silica-almnina had received substantial attention in ICC 1, 52-58). Perhaps the most dramatic change in the subsequent catalytic literature was the debut of zeolites. Why acid catalyzed reactions are so much faster on zeolites than on silica-alumina has been extensively discussed but probably not conclusively. One should be able to know the exact structures of catalytic sites in zeolites, but initial hopes that this would do wonders for mechanistic imderstanding have not been fully realized. Super acids and carbonium ions came into heterogeneous catalysis from homogeneous chemistry and in special cases reaction via carbonium ions seems to occur. [Pg.64]

Since spillover phenomena have been most directly sensed through the use of IR in OH-OD exchange [10] (in addition, in the case of reactions of solids, to phase modification), we used this technique to correlate with the catalytic results. One of the expected results of the action of Hjp is the enhancement of the number of Bronsted sites. FTIR analysis of adsorbed pyridine was then used to determine the relative amounts of the various kinds of acidic sites present. Isotopic exchange (OH-OD) experiments, followed by FTIR measurements, were used to obtain direct evidence of the spillover phenomena. This technique has already been successfully used for this purpose in other systems like Pt mixed or supported on silica, alumina or zeolites [10]. Conner et al. [11] and Roland et al. [12], employed FTIR to follow the deuterium spillover in systems where the source and the acceptor of Hjp were physically distinct phases, separated by a distance of several millimeters. In both cases, a gradient of deuterium concentration as a function of the distance to the source was observed and the zone where deuterium was detected extended with time. If spillover phenomena had not been involved, a gradientless exchange should have been observed. [Pg.98]

We have explored rare earth oxide-modified amorphous silica-aluminas as "permanent" intermediate strength acids used as supports for bifunctional catalysts. The addition of well dispersed weakly basic rare earth oxides "titrates" the stronger acid sites of amorphous silica-alumina and lowers the acid strength to the level shown by halided aluminas. Physical and chemical probes, as well as model olefin and paraffin isomerization reactions show that acid strength can be adjusted close to that of chlorided and fluorided aluminas. Metal activity is inhibited relative to halided alumina catalysts, which limits the direct metal-catalyzed dehydrocyclization reactions during paraffin reforming but does not interfere with hydroisomerization reactions. [Pg.563]

Silica-aluminas contain acid sites stronger than those found in most halide-treated aluminas. We have attempted to tailor the acidity of amorphous silica-alumina by adding varying levels of "permanent" inorganic basic titrants. Such titrants were chosen in order to meet the following four criteria ... [Pg.563]

While our discussion will mainly focus on sifica, other oxide materials can also be used, and they need to be characterized with the same rigorous approach. For example, in the case of meso- and microporous materials such as zeolites, SBA-15, or MCM materials, the pore size, pore distribution, surface composition, and the inner and outer surface areas need to be measured since they can affect the grafting step (and the chemistry thereafter) [5-7]. Some oxides such as alumina or silica-alumina contain Lewis acid centres/sites, which can also participate in the reactivity of the support and the grafted species. These sites need to be characterized and quantified this is typically carried out by using molecular probes (Lewis bases) such as pyridine [8,9],... [Pg.153]

Carotenoid radical formation and stabilization on silica-alumina occurs as a result of the electron transfer between carotenoid molecule and the Al3+ electron acceptor site. Both the three-pulse ESEEM spectrum (Figure 9.3a) and the HYSCORE spectrum (Figure 9.3b) of the canthaxanthin/ A1C13 sample contain a peak at the 27A1 Larmor frequency (3.75 MHz). The existence of electron transfer interactions between Al3+ ions and carotenoids in A1C13 solution can serve as a good model for similar interactions between adsorbed carotenoids and Al3+ Lewis acid sites on silica-alumina. [Pg.169]

Two such well studied systems are pyridine chemisorbed on alumina (15) and pyridine chemisorbed on silica-alumina (16). It had been previously shown that alumina contains only sites which adsorb pyridine in a Lewis acid-base fashion whereas silica-alumina has both Lewis and Bronsted acid sites. These two different kinds of sites are distinguishable by the characteristic vibrational bands of pyridine adducts at these sites (see Table I). Photoacoustic and transmission results are compared in Table II. Note that the PA signal strength depends on factors such as sample particle size and volumes of solid sample and transducing... [Pg.397]

Table I. Assignments of Pyridine Chemisorbed on Silica-Alumina As Lewis Acid Sites (LPY) and Bronsted Acid Sites (BPY)... Table I. Assignments of Pyridine Chemisorbed on Silica-Alumina As Lewis Acid Sites (LPY) and Bronsted Acid Sites (BPY)...
This may be due to the higher acidity of the surface sites (see Kint) values in Table I) and hence higher activation energy of proton adsorption for the silica-alumina and Y-zirconium phosphate. [Pg.234]


See other pages where Silica-aluminas acidic sites is mentioned: [Pg.52]    [Pg.232]    [Pg.233]    [Pg.52]    [Pg.232]    [Pg.233]    [Pg.175]    [Pg.734]    [Pg.79]    [Pg.334]    [Pg.338]    [Pg.340]    [Pg.97]    [Pg.98]    [Pg.104]    [Pg.105]    [Pg.564]    [Pg.567]    [Pg.624]    [Pg.86]    [Pg.331]    [Pg.379]    [Pg.161]    [Pg.43]    [Pg.48]    [Pg.308]    [Pg.470]    [Pg.385]    [Pg.123]    [Pg.234]    [Pg.252]   
See also in sourсe #XX -- [ Pg.287 , Pg.288 , Pg.289 , Pg.531 ]




SEARCH



Acidic alumina

Acidic site

Alumina acidity

Silica-alumina

© 2024 chempedia.info