Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Silane stabilizers

Chemical stability. The chemical stability of SA films is of interest in many areas. However, tliere is no general mle for it. The chemical stability of silane films is remarkable, due to tlieir intennolecular crosslinking. Therefore, tliey are found to be more stable tlian LB films. Alkyltrichlorosilane monolayers provide stmctures tliat are stable to chemical conditions tliat most LB films could not stand. However, photopolymerized LB films also show considerable stability in organic solvents. [Pg.2626]

Stabilizing the resulting enolate of the Michael Addition product can shift the equilibrium as in the case of the vinyl silane shown below... [Pg.166]

Trialkyltin substituents are also powerful ipso-directing groups. The overall electronic effects are similar to those in silanes, but the tin substituent is a better electron donor. The electron density at carbon is increased, as is the stabilization of /S-carbocation character. Acidic cleavage of arylstannanes is formulated as an electrophilic aromatic substitution proceeding through an ipso-oriented c-complex. ... [Pg.589]

Rider and Amott were able to produce notable improvements in bond durability in comparison with simple abrasion pre-treatments. In some cases, the pretreatment improved joint durability to the level observed with the phosphoric acid anodizing process. The development of aluminum platelet structure in the outer film region combined with the hydrolytic stability of adhesive bonds made to the epoxy silane appear to be critical in developing the bond durability observed. XPS was particularly useful in determining the composition of fracture surfaces after failure as a function of boiling-water treatment time. A key feature of the treatment is that the adherend surface prepared in the boiling water be treated by the silane solution directly afterwards. Given the adherend is still wet before immersion in silane solution, the potential for atmospheric contamination is avoided. Rider and Amott have previously shown that such exposure is detrimental to bond durability. [Pg.427]

In a cross-coupling benzoin condensation of two different aldehydes, usually a mixture of products is obtained, with the ratio being determined by the relative stabilities of the four possible coupling products under thermodynamic control. If, however, an acyl silane, e.g. 5, is used as the donor component, the a-silyloxy-ketone 6 is obtained as a single product " ... [Pg.38]

Styrene monomer was also copolymerized with a series of functional monomers by using a single-step dispersion copolymerization procedure carried out in ethanol as the dispersion medium by using azobisizobu-tyronitrile and polyvinylpyrollidone as the initiator and the stabilizer, respectively [84]. The comonomers were methyl methacrylate, hydroxyethyl acrylate, metha-crylic acid, acrylamide, allyltrietoxyl silane, vinyl poly-dimethylsiloxane, vinylsilacrown, and dimethylamino-... [Pg.216]

Silane coupling agents may contribute hydrophilic properties to the interface, especially when amino functional silanes, such as epoxies and urethane silanes, are used as primers for reactive polymers. The primer may supply much more amine functionality than can possibly react with the resin at the interphase. Those amines that could not react are hydrophilic and, therefore, responsible for the poor water resistance of bonds. An effective way to use hydrophilic silanes is to blend them with hydrophobic silanes such as phenyltrimethoxysilane. Mixed siloxane primers also have an improved thermal stability, which is typical for aromatic silicones [42]. [Pg.796]

Analog-to-glass fibers silanes are used as coupling agents for natural fiber polymer composites. For example, the treatment of wood fibers with product A-175 improves wood dimensional stability [53]. In contrast, a decrease of mechanical properties was observed for coir-UP composites after a fiber modification with di-chloromethylvinyl silane [54]. The treatment of mercer-... [Pg.798]

If R1 differs from R2. the preparation may lead to both regioisomers. In these cases, a synthetic route which does not rely on allyl anion substitution is often the most advantageous one. Thus, the best results are recorded for allylboronates and -silanes which also possess the required constitutional and configurational stability. [Pg.224]

Polyary lsiloxanes Carboranes Good thermal stability 400-500°C (752-932°F) coatings, adhesives Stable in air and nitrogen at 400-450°C (752-842°F) elastomeric properties for silane derivatives up to 538°C (1000°F) adhesives. [Pg.320]

Hydrosilation reactions have been one of the earlier techniques utilized in the preparation of siloxane containing block copolymers 22,23). A major application of this method has been in the synthesis of polysiloxane-poly(alkylene oxide) block copolymers 23), which find extensive applications as emulsifiers and stabilizers, especially in the urethane foam formulations 23-43). These types of reactions are conducted between silane (Si H) terminated siloxane oligomers and olefinically terminated poly-(alkylene oxide) oligomers. Consequently the resulting system contains (Si—C) linkages between different segments. Earlier developments in the field have been reviewed 22, 23,43> Recently hydrosilation reactions have been used effectively by Ringsdorf 255) and Finkelmann 256) for the synthesis of various novel thermoplastic liquid crystalline copolymers where siloxanes have been utilized as flexible spacers. Introduction of flexible siloxanes also improved the processibility of these materials. [Pg.46]

The reaction of tetramethylsilane with fluorine led to the isolation of several, partially fluorine-substituted tetramethylsilanes (see Tables VII-IX), and preservation of over 80% of the silicon-carbon bonds in the initial, tetramethylsilane reactant. The stability of many of the partially fluorinated germanes and silanes (some are stable to over 100°C) is very surprising, for the possibility of elimination of hydrogen fluoride is obvious. Indeed, before the first reported synthesis (12) of... [Pg.198]

When double bonds are reduced by lithium in ammonia or amines, the mechanism is similar to that of the Birch reduction (15-14). ° The reduction with trifluoro-acetic acid and EtsSiH has an ionic mechanism, with H coming in from the acid and H from the silane. In accord with this mechanism, the reaction can be applied only to those alkenes that when protonated can form a tertiary carbocation or one stabilized in some other way (e.g., by a OR substitution). It has been shown, by the detection of CIDNP, that reduction of a-methylstyrene by hydridopenta-carbonylmanganese(I) HMn(CO)5 involves free-radical addition. ... [Pg.1008]

Reversion characteristics of NR are of great concern. Lot of novel chemicals have been introduced to increase the reversion resistance of NR. Examples of these are zinc soap activator (Structol-A73), silane couphng agent (Si-69), anti-reversion agent (Perkalink 900), and post-vulcanization stabilizer (Durahnk HTS and Vulcuren KA 9188 Figure 32.7). These materials will enhance the life of the tire, enable the users for more retreading, and thereby reduce the material demand. " ... [Pg.925]

Matrix IR spectra of various silenes are important analytical features and allow detection of these intermediates in very complex reaction mixtures. Thus, the vibrational frequencies of Me2Si=CH2 were used in the study of the pyrolysis mechanism of allyltrimethylsilane [120] (Mal tsev et al., 1983). It was found that two pathways occur simultaneously for this reaction (Scheme 6). On the one hand, thermal destruction of the silane [120] results in formation of propylene and silene [117] (retroene reaction) on the other hand, homolytic cleavage of the Si—C bond leads to the generation of free allyl and trimethylsilyl radicals. While both the silene [117] and allyl radical [115] were stabilized and detected in the argon matrix, the radical SiMc3 was unstable under the pyrolysis conditions and decomposed to form low-molecular products. [Pg.46]

Nowadays silenes are well-known intermediates. A number of studies have been carried out to obtain more complex molecules having Si=C double bonds. Thus, an attempt has been made to generate and stabilize in a matrix 1,1-dimethyl-l-silabuta-l,3-diene [125], which can be formed as a primary product of pyrolysis of diallyldimethylsilane [126] (Korolev et al., 1985). However, when thermolysis was carried out at 750-800°C the absorptions of only two stable molecules, propene and 1,1-dimethylsilacyclobut-2-ene [127], were observed in the matrix IR spectra of the reaction products. At temperatures above 800°C both silane [126] and silacyclobutene [127] gave low-molecular hydrocarbons, methane, acetylene, ethylene and methylacetylene. A comparison of relative intensities of the IR... [Pg.47]


See other pages where Silane stabilizers is mentioned: [Pg.241]    [Pg.1036]    [Pg.105]    [Pg.138]    [Pg.140]    [Pg.152]    [Pg.241]    [Pg.1036]    [Pg.105]    [Pg.138]    [Pg.140]    [Pg.152]    [Pg.250]    [Pg.441]    [Pg.446]    [Pg.410]    [Pg.961]    [Pg.974]    [Pg.13]    [Pg.337]    [Pg.360]    [Pg.365]    [Pg.226]    [Pg.52]    [Pg.835]    [Pg.835]    [Pg.29]    [Pg.26]    [Pg.455]    [Pg.206]    [Pg.68]    [Pg.86]    [Pg.14]    [Pg.22]    [Pg.298]    [Pg.304]    [Pg.335]    [Pg.110]    [Pg.175]    [Pg.430]   
See also in sourсe #XX -- [ Pg.99 ]




SEARCH



Commercial silanes, thermal stability

Monomer stabilization silane

Silane complexes stability

Silane, crotyltrimethylconfigurational stability

Silylium ions silane-stabilized

© 2024 chempedia.info