Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Signal transduction phosphorylation

Our results demonstrated that the identified subsets of the activated protein kinases significantly increased the accuracy of clinical outcome predictions. Most notably in the study, we evaluated protein phosphorylation levels instead of total protein expression levels. Protein phosphorylation and dephosphorylation are well-characterized biochemical processes for protein kinases to conduct cellular signal transduction. Phosphorylation at certain tyrosine, serine, or threonine residues in kinases is a key step for their activation, and the measurement of these phosphorylations reflects their functional status in vivo. Thus, the protein kinase phosphorylation-based tissue microarray more accurately reveals the molecular mechanisms of breast cancers, and more accurately predicts the individualized survival and treatment response. [Pg.292]

Signal transduction Phosphorylation-dependent degradation of inhibitor protein with... [Pg.573]

There are two main classes of protein tyrosine kinases (PTKs) as cell surface receptors involved in signal transduction. Phosphorylation on Tyr represents an authentic physiological process. While phosphorylation in nontransformed cells occurs mostly on Ser and Thr, phosphorylation in transformed cells includes Ser, Thr and Tyr residues. Thus Tyr phosphorylation is intimately linked to cell proliferation/transformation. Tyrosine phosphorylation is not limited to the actions of the transforming viruses or growth factors. It regulates a number of important signaling processes including ... [Pg.417]

Noncatalytic phosphotyrosine binding (PTB) domains are 100-150 residue modules, which bind Asn-Pro-X-Tyr motifs. PTB-domain binding specificity is determined by residues at the amino-terminal side of the phosphotyrosine. In most cases, the tyrosine residue must be phosphorylated in order to mediate binding. PTB domain containing proteins are often found in signal transduction pathways. [Pg.976]

The RTK activity phosphorylates tyrosine residues within the intracellular domain of the receptor. These phosphorylated residues function as docking sites for proteins that will convey the signal to downstream signal transduction components. PKI can be developed that bind these phosphorylated docking sites in order to abrogate inappropriate downstream signalling. [Pg.1010]

Histidine phosphatases and aspartate phosphatases are well established in lower organisms, mainly in bacteria and in context with two-component-systems . Reversible phosphorylation of histidine residues in vertebrates is in its infancy. The first protein histidine phosphatase (PHP) from mammalian origin was identified just recently. The soluble 14 kD protein does not resemble any of the other phosphatases. ATP-citrate lyase and the (3-subunit of heterotrimeric GTP-binding proteins are substrates of PHP thus touching both, metabolic pathways and signal transduction [4]. [Pg.1014]

Smad anchor for receptor activation) An intracellular protein Sara which accumulates at early endosomes and plays a key role in TGF- 3 signal transduction through the recruitment of receptor activated R-Smads for phosphorylation by the type ITGF-B receptor. [Pg.1107]

In contrast to tyrosine kinases, Tyrosine phosphatases (PTPs) are enzymes which act on phosphorylated proteins and catalyze the transfer of a phosphate group from a tyrosine residue to a water molecule, generating orthophosphates in a process which is referred to as dephosphorylation. PTPs are involved in many cellular signal transduction pathways. [Pg.1262]

The VACM-1 receptor is a membrane-associated protein with a single putative transmembrane domain that binds selectively AVP (XD — 2 nM), but cannot discriminate between VXR and V2R analogues. It is expressed in endothelial and medullary collecting duct cells and upon stimulation by AVP. It induces a mobilization of cytosolic-free Ca2+, decreases cAMP production and inhibits cellular growth via MAPK phosphorylation and p53 expression. The mechanism of action and physiological functions of this new receptor are not well understood, but it seems to participate in the regulation of AVP induced signal transduction pathways or of a yet unidentified peptide. [Pg.1276]

Figure 1. Simplified schematic of receptor-mediated signal transduction in neutrophils. Binding of ligand to the receptor activates a guanine-nucleotide-binding protein (G protein), which then stimulates phospholipase C. Phosphatidylinositol 4,5-bis-phosphate is cleaved to produce diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3). DAG stimulates protein kinase C. IP3 causes the release of Ca from intracellular stores, which results in an increase in the cytosolic Ca concentration. This increase in Ca may stimulate protein kinase C, calmodulin-dependent protein kinases, and phospholipase A2. Protein phosphorylation events are thought to be important in stimulating degranulation and oxidant production. In addition, ionic fluxes occur across the plasma membrane. It is possible that phospholipase A2 and ionic channels may be governed by G protein interactions. ... Figure 1. Simplified schematic of receptor-mediated signal transduction in neutrophils. Binding of ligand to the receptor activates a guanine-nucleotide-binding protein (G protein), which then stimulates phospholipase C. Phosphatidylinositol 4,5-bis-phosphate is cleaved to produce diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3). DAG stimulates protein kinase C. IP3 causes the release of Ca from intracellular stores, which results in an increase in the cytosolic Ca concentration. This increase in Ca may stimulate protein kinase C, calmodulin-dependent protein kinases, and phospholipase A2. Protein phosphorylation events are thought to be important in stimulating degranulation and oxidant production. In addition, ionic fluxes occur across the plasma membrane. It is possible that phospholipase A2 and ionic channels may be governed by G protein interactions. ...
The phosphorylation and dephosphorylation of seryl, threonyl, and tyrosyl residues regulate the activity of certain enzymes of lipid and carbohydrate metabolism and the properties of proteins that participate in signal transduction cascades. [Pg.264]

One main line of future research could be in the inhibitory/activating effect on key enzymes involved in the pathogenesis of arteriosclerosis. In particular, enzymes regulating signal transduction involved in phosphorylation of proteins, such as PKC and tyrosine protein kinase, seems to be somehow modulated by different polyphenols and may represent a possible target for polyphenol activity. [Pg.13]

XU K and thornalley p j (2001) Signal transduction activated by the cancer chemopreventive isothiocyanates cleavage of BID protein, tyrosine phosphorylation and activation of INK , Br J Cancer, 84 670-73. [Pg.63]

Liu J., Chen P., Wang D. and Halpem M. (1999). Signal transduction in the vomeronasal organ of garter snakes ligand-receptor binding mediated protein phosphorylation. Biochem Biophys Acta 1450, 320-330. [Pg.224]

Gartner, A., Nasmyth, K., and Ammerer, G. (1992). Signal transduction in Saccharomyces cerevisiae requires tyrosine and threonine phosphorylation of FUS3 and KSS1. Genes Dev. 6 1280-1292. [Pg.40]

Morrison, D. K., Kaplan, D. R., Rapp, U., and Roberts, T. M. (1988). Signal transduction from membrane to cytoplasm growth factors and membrane-bound oncogene products increase Raf-1 phosphorylation and associated protein kinase activity. Proc. Natl. Acad. Sci. USA 85 8855-8859. [Pg.46]

Post-translational modification of proteins plays a critical role in cellular function. For, example protein phosphorylation events control the majority of the signal transduction pathways in eukaryotic cells. Therefore, an important goal of proteomics is the identification of post-translational modifications. Proteins can undergo a wide range of post-translational modifications such as phosphorylation, glycosylation, sulphonation, palmitoylation and ADP-ribosylation. These modifications can play an essential role in the function of the protein and mass spectrometry has been used to characterize such modifications. [Pg.17]


See other pages where Signal transduction phosphorylation is mentioned: [Pg.439]    [Pg.947]    [Pg.439]    [Pg.947]    [Pg.205]    [Pg.209]    [Pg.488]    [Pg.343]    [Pg.566]    [Pg.567]    [Pg.635]    [Pg.642]    [Pg.707]    [Pg.844]    [Pg.845]    [Pg.1002]    [Pg.1008]    [Pg.1023]    [Pg.1031]    [Pg.1140]    [Pg.1204]    [Pg.1204]    [Pg.1308]    [Pg.64]    [Pg.95]    [Pg.174]    [Pg.211]    [Pg.18]    [Pg.200]    [Pg.467]    [Pg.467]    [Pg.70]    [Pg.136]    [Pg.22]    [Pg.41]    [Pg.103]   
See also in sourсe #XX -- [ Pg.284 , Pg.285 , Pg.285 , Pg.386 ]




SEARCH



Signal phosphorylation

Signal transduction

Signaling transduction

© 2024 chempedia.info