Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sharpless reagent, oxidation alcohols

The Sharpless epoxidation of allylic alcohols by hydroperoxides uses as mediator [45] or as catalyst [46] a chiral titanium complex obtained from the combination Ti(OPr )4/diethyl tartrate (DET) in 1 1 ratio. Kinetic resolution of P-hydroxysulfides was also observed, but without diastereoselectivity for the product P-hydroxysulfoxides [47]. We found that the Sharpless reagent deactivated by 1 equivalent of water allows the enantioselective oxidation of aryl methyl sulfides into sulfoxides to be performed with ee s up to 90% [4S-50]. The best reagent combination proved to be Ti(0Pr )4/DET/H20 = 1 2 1. Independently, Modena et al. obtained similar enantioselectivities with the combination Ti(OPr )4/DET in 1 4 ratio [51]. These two combinations are sometimes referred to as the Kagan reagent and the Modena reagent, respectively. They will be considered successively. [Pg.10]

Sharp less asymmetric epoxidation (Section 12.15) An enantioselec-tive oxidation reaction that converts the double bond of an aUyUc alcohol to a predictable enantiomeiicaUy enriched epoxide. Sharpless reagent (Section 12.15) The reagent used in the Sharpless asymmetric epoxidation. The Sharpless reagent consists of tert-butyl hydroperoxide, a titanium catalyst, and one enantiomer of diethyl tartrate. [Pg.1212]

A catalytic enantio- and diastereoselective dihydroxylation procedure without the assistance of a directing functional group (like the allylic alcohol group in the Sharpless epox-idation) has also been developed by K.B. Sharpless (E.N. Jacobsen, 1988 H.-L. Kwong, 1990 B.M. Kim, 1990 H. Waldmann, 1992). It uses osmium tetroxide as a catalytic oxidant (as little as 20 ppm to date) and two readily available cinchona alkaloid diastereomeis, namely the 4-chlorobenzoate esters or bulky aryl ethers of dihydroquinine and dihydroquinidine (cf. p. 290% as stereosteering reagents (structures of the Os complexes see R.M. Pearlstein, 1990). The transformation lacks the high asymmetric inductions of the Sharpless epoxidation, but it is broadly applicable and insensitive to air and water. Further improvements are to be expected. [Pg.129]

Sharpless and Masumune have applied the AE reaction on chiral allylic alcohols to prepare all 8 of the L-hexoses. ° AE reaction on allylic alcohol 52 provides the epoxy alcohol 53 in 92% yield and in >95% ee. Base catalyze Payne rearrangement followed by ring opening with phenyl thiolate provides diol 54. Protection of the diol is followed by oxidation of the sulfide to the sulfoxide via m-CPBA, Pummerer rearrangement to give the gm-acetoxy sulfide intermediate and finally reduction using Dibal to yield the desired aldehyde 56. Homer-Emmons olefination followed by reduction sets up the second substrate for the AE reaction. The AE reaction on optically active 57 is reagent... [Pg.59]

Asymmetric epoxidation of olefins is an effective approach for the synthesis of enan-tiomerically enriched epoxides. A variety of efficient methods have been developed [1, 2], including Sharpless epoxidation of allylic alcohols [3, 4], metal-catalyzed epoxidation of unfunctionalized olefins [5-10], and nucleophilic epoxidation of electron-deficient olefins [11-14], Dioxiranes and oxazirdinium salts have been proven to be effective oxidation reagents [15-21], Chiral dioxiranes [22-28] and oxaziridinium salts [19] generated in situ with Oxone from ketones and iminium salts, respectively, have been extensively investigated in numerous laboratories and have been shown to be useful toward the asymmetric epoxidation of alkenes. In these epoxidation reactions, only a catalytic amount of ketone or iminium salt is required since they are regenerated upon epoxidation of alkenes (Scheme 1). [Pg.202]

In 1980, Katsuki and Sharpless described the first really efficient asymmetric epoxidation of allylic alcohols with very high enantioselectivities (ee 90-95%), employing a combination of Ti(OPr-/)4-diethyl tartrate (DET) as chiral catalyst and TBHP as oxidant Stoichiometric conditions were originally described for this system, however the addition of molecular sieves (which trap water traces) to the reaction allows the epoxidation to proceed under catalytic conditions. The stereochemical course of the reaction may be predicted by the empirical rule shown in equations 40 and 41. With (—)-DET, the oxidant approaches the allylic alcohol from the top side of the plane, whereas the bottom side is open for the (-l-)-DET based reagent, giving rise to the opposite optically active epoxide. Various aspects of this reaction including the mechanism, theoretical investigations and synthetic applications of the epoxy alcohol products have been reviewed and details may be found in the specific literature . [Pg.1092]

The known allylic alcohol 9 derived from protected dimethyl tartrate is exposed to Sharpless asymmetric epoxidation conditions with (-)-diethyl D-tartrate. The reaction yields exclusively the anti epoxide 10 in 77 % yield. In contrast to the above mentioned epoxidation of the ribose derived allylic alcohol, in this case epoxidation of 9 with MCPBA at 0 °C resulted in a 65 35 mixture of syn/anti diastereomers. The Sharpless epoxidation of primary and secondary allylic alcohols discovered in 1980 is a powerful reagent-controlled reaction.12 The use of titanium(IV) tetraisopropoxide as catalyst, tert-butylhydro-peroxide as oxidant, and an enantiopure dialkyl tartrate as chiral auxiliary accomplishes the epoxidation of allylic alcohols with excellent stereoselectivity. If the reaction is kept absolutely dry, catalytic amounts of the dialkyl tartrate(titanium)(IV) complex are sufficient. [Pg.202]

Chiral epoxides are important intermediates in organic synthesis. A benchmark classic in the area of asymmetric catalytic oxidation is the Sharpless epoxidation of allylic alcohols in which a complex of titanium and tartrate salt is the active catalyst [273]. Its success is due to its ease of execution and the ready availability of reagents. A wide variety of primary allylic alcohols are epoxidized in >90% optical yield and 70-90% chemical yield using tert-butyl hydroperoxide as the oxygen donor and titanium-isopropoxide-diethyltartrate (DET) as the catalyst (Fig. 4.97). In order for this reaction to be catalytic, the exclusion of water is absolutely essential. This is achieved by adding 3 A or 4 A molecular sieves. The catalytic cycle is identical to that for titanium epoxidations discussed above (see Fig. 4.20) and the actual catalytic species is believed to be a 2 2 titanium(IV) tartrate dimer (see Fig. 4.98). The key step is the preferential transfer of oxygen from a coordinated alkylperoxo moiety to one enantioface of a coordinated allylic alcohol. For further information the reader is referred to the many reviews that have been written on this reaction [274, 275]. [Pg.196]

The original report32 of the titanium-catalyzed asymmetric epoxidation of allylic alcohols in 1980 has been followed by hundreds of applications, the majority of which use the initially reported conditions. In the decade since the introduction of this reaction numerous improvements have been made41. The most complete discussion of the preparative aspects of both the asymmetric epoxidation and the kinetic resolution was presented by the Sharpless group42. This paper details the effects of reagent stoichiometry and concentration, substrate concentration, aging of the catalyst and variation of oxidant, solvent and tartrate as well as workup procedures. What is particularly noteworthy in this presentation is that significant amounts of unpublished work are drawn upon to develop recommendations for successful reaction. [Pg.191]

The Sharpless asymmetric hydroxylation can take one of two forms, the initially developed asymmetric dihydroxylation (AD)1 or the more recent variation, asymmetric aminohydroxylation (AA).2 In the case of AD, the product is a 1,2-diol, whereas in the AA reaction, a 1,2-amino alcohol is the desired product. These reactions involve the asymmetric transformation of an alkene to a vicinally functionalized alcohol mediated by osmium tetraoxide in the presence of chiral ligands (e.g., (DHQD)2-PHAL or (DHQ)2-PHAL). A mixture of these reagents (ligand, osmium, base, and oxidant) is commercially available and is sold under the name of AD-mix p or AD-mix a (vide infra). [Pg.67]


See other pages where Sharpless reagent, oxidation alcohols is mentioned: [Pg.73]    [Pg.73]    [Pg.53]    [Pg.328]    [Pg.559]    [Pg.380]    [Pg.236]    [Pg.328]    [Pg.119]    [Pg.26]    [Pg.36]    [Pg.351]    [Pg.119]    [Pg.231]    [Pg.27]    [Pg.124]    [Pg.261]    [Pg.468]    [Pg.205]    [Pg.56]    [Pg.205]    [Pg.262]    [Pg.547]    [Pg.194]    [Pg.120]    [Pg.132]    [Pg.533]    [Pg.63]    [Pg.665]    [Pg.401]    [Pg.17]    [Pg.238]    [Pg.289]    [Pg.126]   
See also in sourсe #XX -- [ Pg.337 , Pg.338 ]

See also in sourсe #XX -- [ Pg.337 , Pg.338 ]




SEARCH



Alcohols oxidation reagents

Alcohols reagents

Alcohols, oxidizing reagents

Oxidation reagents

Sharpless

Sharpless oxidation

Sharpless reagent

Sharpless reagent oxidant

Sharpless reagent, oxidation

© 2024 chempedia.info