Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Separation Structural information

Prior separation of mixtures into individual components may not be needed. If the mass spectrometer is capable of MS/MS operation, one of the mass spectrometers is used to isolate individual ions according to m/z value (mass-to-charge ratio), and the other is used to examine their fragmentation products to obtain structural information. [Pg.277]

Mass spectrometers exploit the difference in the mass-to-charge (m/z) ratio of ionized atoms or molecules to separate them from each other. The m/z ratio of a molecule is also a highly characteristic property that can be used for determining chemical and structural information. Further, molecules can be fragmented in distinctive ways in mass spectrometers, and the fragments that arise also provide quite specific structural information about the molecule. The basic... [Pg.136]

Arguably the ultimate LC-MS interface would be one that provides El spectra, i.e. a spectrum from which structural information can be extracted by using famihar methodology, and this was one of the great advantages of the moving-belt interface. There is, however, an incompatibility between the types of compound separated by HPLC and the way in which electron ionization is achieved and therefore such an interface has restricted capability, as previously discussed with respect to the moving-belt interface (see Section 4.2 above). [Pg.147]

The application areas for LC-MS, as will be illustrated later, are diverse, encompassing both qualitative and quantitative determinations of both high-and low-molecular-weight materials, including synthetic polymers, biopolymers, environmental pollutants, pharmaceutical compounds (drugs and their metabolites) and natural products. In essence, it is used for any compounds which are found in complex matrices for which HPLC is the separation method of choice and where the mass spectrometer provides the necessary selectivity and sensitivity to provide quantitative information and/or it provides structural information that cannot be obtained by using other detectors. [Pg.187]

Coupled on-line techniques (GC-MS, LC-MS, MS/ MS, etc.) provide for indirect mixture analysis, while many of the newer desorption/ionisation methods are well suited for direct analysis of mixtures. DI techniques, applied either directly or with prior liquid chromatographic separations, provide molecular weight information up to 5000 Da, but little or no additional structural information. Higher molecular weight (or more labile) additives can be detected more readily in the isolated extract, since desorption/ionisation techniques (e.g. FD and FAB) can be used with the extract but not with the compounded polymer. Major increases in sensitivity will be needed to support imaging experiments with DI in which the spatial distribution of ions in the x — y plane are followed with resolutions of a few tens of microns, and the total ion current obtained is a few hundreds of ions. [Pg.385]

Principles and Characteristics Analytical multistage mass spectrometry (MSn) relies on the ability to activate and dissociate ions generated in the ion source in order to identify or obtain structural information about an unknown compound and to analyse mixtures by exploiting two or more mass-separating steps. A basic instrument for the currently most used form, tandem mass spectrometry (MS/MS), consists of a combination of two mass analysers with a reaction region between them. While a variety of instrument set-ups can be used in MS/MS, there is a single basic concept involved the measurement of the m/z of ions before and after a reaction in the mass spectrometer the reaction involves a change in mass and can be represented as ... [Pg.398]

The particle-beam, interface has been used for direct introduction of extracts into the mass spectrometer without chromatographic separation [55]. In fact, chromatographic separation is not always essential, especially if structural information is available about the analytes of interest. The main features of this particular approach are ... [Pg.407]

Successful combination of a chromatographic procedure for separating and isolating additive components with an on-line method for obtaining the IR spectrum enables detailed compositional and structural information to be obtained in a relatively short time frame, as shown in the case of additives in PP [501], and of a plasticiser (DEHP) and an aromatic phenyl phosphate flame retardant in a PVC fabric [502], RPLC-TSP-FTIR with diffuse reflectance detection has been used for dye analysis [512], The HPLC-separated components were deposited as a series of concentrated spots on a moving tape. HPLC-TSP-FTIR has analysed polystyrene samples [513,514], The LC Transform has also been employed for the identification of a stain in carpet yarn [515] and a contaminant in a multiwire cable [516], HPLC-FTIR can be used to maintain consistency of raw materials or to characterise a performance difference. [Pg.496]

Principles and Characteristics The main reasons for hyphenating MS to CE are the almost universal nature of the detector, its sensitivity and the structural information obtainable, including assessment of peak purity and identity. As CE is a liquid-phase separation technique, coupling to the mass spectrometer can be achieved by means of (modified) LC-MS interfaces. Because of the low flow-rates applied in CE, i.e. typically below lOOnLmin-1, a special coupling device is required to couple CE and the LC-MS interface. Three such devices have been developed, namely a... [Pg.544]

Capillary electrophoresis has also been combined with other analytical methods like mass spectrometry, NMR, Raman, and infrared spectroscopy in order to combine the separation speed, high resolving power and minimum sample consumption of capillary electrophoresis with the selectivity and structural information provided by the other techniques [6]. [Pg.241]

Mass spectrometry is used to identify unknown compounds by means of their fragmentation pattern after electron impact. This pattern provides structural information. Mixtures of compounds must be separated by chromatography beforehand, e.g. gas chromatography/mass spectrometry (GC-MS) because fragments of different compounds may be superposed, thus making spectral interpretation complicated or impossible. To obtain complementary information about complex mixtures as a whole, it may be advantageous to have only one peak for each compound that corresponds to its molecular mass ([M]+). Even for thermally labile, nonvolatile compounds, this can be achieved by so-called soft desorption/ionisation techniques that evaporate and ionise the analytes without fragmentation, e.g. matrix-assisted laser desorption/ionisation mass spectrometry (MALDI-MS). [Pg.131]


See other pages where Separation Structural information is mentioned: [Pg.154]    [Pg.157]    [Pg.154]    [Pg.157]    [Pg.522]    [Pg.245]    [Pg.402]    [Pg.240]    [Pg.253]    [Pg.667]    [Pg.522]    [Pg.128]    [Pg.157]    [Pg.376]    [Pg.247]    [Pg.52]    [Pg.422]    [Pg.285]    [Pg.275]    [Pg.647]    [Pg.260]    [Pg.337]    [Pg.426]    [Pg.452]    [Pg.454]    [Pg.462]    [Pg.481]    [Pg.504]    [Pg.538]    [Pg.542]    [Pg.162]    [Pg.116]    [Pg.15]    [Pg.17]    [Pg.940]    [Pg.135]    [Pg.39]    [Pg.89]    [Pg.345]    [Pg.265]    [Pg.311]    [Pg.381]   
See also in sourсe #XX -- [ Pg.188 ]




SEARCH



Separation information

Structural information

Structural information structure

Structural separation

Structure information

© 2024 chempedia.info