Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Separation capillary isotachophoresis

Electrodriven Separation Techniques encompass a wide range of analytical procedures based on several distinct physical and chemical principles, usually acting together to perform the requh ed separation. Example of electrophoretic-based techniques includes capillary zone electrophoresis (CZE), capillary isotachophoresis (CITP), and capillary gel electrophoresis (CGE) (45-47). Some other electrodriven separation techniques are based not only on electrophoretic principles but rather on chromatographic principles as well. Examples of the latter are micellar... [Pg.143]

We therefore sought to evaluate reproducibility of shotgun proteomics in studies of archival FFPE tissue. Because FFPE samples are more complex than non-cross-linked samples, we evaluated FFPE human liver for analytical reproducibility and confidence in protein assignments.20 This complexity strengthens the argument for using high-resolution separations to maximize analyte concentration and minimize matrix effects. In this case, we used transient capillary isotachophoresis/capillary zone electrophoresis (cITP/cZE) in place of IEF to help address this effect. cITP/cZE has a resolution superior even to cIEF (90% of identified peptides in 1 fraction, 95% in 2 fractions or less for cITP/cZE, vs. 75% and 80%, respectively, for cIEF). [Pg.356]

Isotachophoresis. In isotachophoresis (ITP), or displacement electrophoresis or multizonal electrophoresis, the sample is inserted between two different buffers (electrolytes) without electroosmotic flow. The electrolytes are chosen so that one (the leading electrolyte) has a higher mobility and the other (the trailing electrolyte) has a lower mobility than the sample ions. An electric field is applied and the ions start to migrate towards the anode (anions) or cathode (cations). The ions separate into zones (bands) determined by their mobilities, after which each band migrates at a steady-state velocity and steady-state stacking of bands is achieved. Note that in ITP, unlike ZE, there is no electroosmotic flow and cations and anions cannot be separated simultaneously. Reference 26 provides a recent example of capillary isotachophoresis/zone electrophoresis coupled with nanoflow ESI-MS. [Pg.113]

The hyphenation of CE and NMR combines a powerful separation technique with an information-rich detection method. Although compared with LC-NMR, CE-NMR is still in its infancy it has the potential to impact a variety of applications in pharmaceutical, food chemistry, forensics, environmental, and natural products analysis because of the high information content and low sample requirements of this method [82-84]. In addition to standard capillary electrophoresis separations, two CE variants have become increasingly important in CE-NMR, capillary electrochromatography and capillary isotachophoresis, both of which will be described later in this section. [Pg.377]

Fanali et al. have described a capillary isotachophoresis method for the determination of procaine in pharmaceuticals [ 150]. The drug was determined in a 6 pL sample of solution (Spofa product, obtained from Czechoslovakia, and diluted 180-fold) by cationic isotachophoresis in the single column mode. The system used a PTFE capillary column (20 cm x 0.3 mm) and a conductivity detector. The separation was carried out at room temperature, at 50 pA (but switched to 25 pA during detection). [Pg.445]

Finally, when RPC methods are used in preparative studies with peptides, the opportunity routinely exists for subsequent analysis of the recovered fractions by a variety of analytical methods including high-speed RP-HPLC, HP-IEX, HP-HILIC, or HP-IMAC, zonal or micellar electrokinetic high-performance capillary electrophoresis (HP-CZE and MECK-CZE), capillary electrochromatography (CEC), or capillary isotachophoresis. The combination of the RPC information, drawn from the In k versus i > plots, with the data derived from on-line spectroscopic detection thus readily provides a comprehensive opportunity to assess the purity of an isolated peptide, many of the physicochemical features of the interaction, as well as a means to optimize the resolution in the RPC separation. [Pg.598]

Among the electrophoretic methods of chiral resolution, various forms of capillary electrophoresis such as capillary zone electrophoresis (CZE), capillary isotachophoresis (CIF), capillary gel electrophoresis (CGE), capillary isoelectric focusing (CIEF), affinity capillary electrophoresis (ACE), and separation on microchips have been used. However, in contrast to others, the CZE model has been used frequently for this purpose [44]. On the other hand, drawbacks associated with the electrophoretic technique due to lack of development of modem chiral phases have limited the application of these methods. Moreover, the electrophoretic techniques cannot be used at the preparative scale, which represents an urgent need of chiral separation science. [Pg.26]

In 1989, Yamamoto et al. developed the first technique that directly coupled chromatography to capillary electrophoresis, although again in a non-comprehensive fashion. Low-pressure gel permeation chromatography, which separates analytes based on differences in molecular size, was combined with capillary isotachophore-sis, which separates according to electrophoretic mobility. Capillary isotachophoresis... [Pg.201]

Another CE separation method that has been adapted to on-line NMR detection for trace level separations is capillary isotachophoresis [22]. In this case, after the separation, the analyte bands are slowly moved through the capillary until they lie directly within the coil. Precise positioning of the analyte bands in the NMR detection coil can be difficult. A recent enhancement is the use of several NMR detection coils on a single separation capillary [23], In this way, the first coil acts as a scout coil and is optimized for sensitivity (not necessarily linewidth) to locate the analyte band as it moves through the coil. After an analyte band is detected, the flow is stopped after the appropriate time-interval so that the analyte bands are now located in the second coil, which is used to acquire high-resolution NMR spectra. [Pg.276]

The second separation mechanism is found in capillary isoelectric focusing (cIEF), where analytes are separated on the basis of isoelectric points. The third mechanism is found in capillary isotachophoresis (cITP), where all of the solutes travel at the same velocity through the capillary but are... [Pg.154]

The separation unit of the capillary isotachophoresis instrument used is shown in Fig. 13.1. A 0.85mm id capillary tube made of fluorinated ethylene propylene copolymer was used in the pre-separation (first) stage and a capillary tube of 0.30mm id made of the same material served for the separation in the second stage. Both tubes were provided with conductivity detection cells [18] and an ac conductivity mode of detection [15] was used for making the separations visible. [Pg.223]

Capillary electrophoresis is a general term that is used to describe a number of different separation techniques. Capillary zone electrophoresis (CZE) is the classic technique and is therefore usually referred to as just CE. Other techniques include micellar electrokinetic chromatography (MEKC), capillary isoelectric focusing, and capillary isotachophoresis. CZE and MEKC are the predominant techniques and are those used herein, so only they will be discussed in detail here. [Pg.390]

Capillary isotachophoresis (CITP) — An electrophoretic separation technique (-> electrophoresis) in a discontinuous -> buffer system, in which the analytes migrate according to their -> electrophoretic mobilities, forming a chain of adjacent zones moving with equal velocity between two solutions, i.e., leading and terminating electrolyte, which bracket the mobility range of the analytes. Ref [i] Riekkola ML, Jonsson jA, Smith RM (2004) Pure Appl Chem 76 443... [Pg.72]

Capillary Isotachophoresis. In isotachophoresis, the capillary is first filled with a buffer of higher mobility than any of the solutes, then the sample, and, finally, a second buffer with lower mobility than any of the analytes. Separation occurs in the zone formed between the two electrolytes. [Pg.290]

The first applications of CDs as chiral selectors in CE were reported in capillary isotachophoresis (CITP) [2] and capillary gel electrophoresis (CGE) [3]. Soon thereafter, Fanali described the application of CDs as chiral selectors in free-solution CE [4] and Terabe used the charged CD derivative for enantioseparations in the capillary electrokinetic chromatography (CEKC) mode [5]. It seems important to note that although the experiment in the CITP, CGE, CE, and CEKC is different, the enantiomers in all of these techniques are resolved based on the same (chromatographic) principle, which is a stereoselective distribution of enantiomers between two (pseudo) phases with different mobilities. Thus, enantioseparations in CE are commonly based on an electrophoretic migration principle and on a chromatographic separation principle [6]. [Pg.1462]

The main separation modes used in CE are capillary zone electrophoresis (CZE), micellar electrokinetic capillary chromatography (MEKC), capillary isotachophoresis, capillary gel electrophoresis, and capillary isoelectric focusing. CZE and MEKC are used most often. CE buffers are generally aqueous-based, though nonaqueous systems are exploited as well, particularly for analytes that are insoluble or sparingly soluble. [Pg.608]

Capillary zone electrophoresis (CZE), with direct or indirect photometry and conductivity has become popular in wine analysis. Very little, or sometimes no sample preparation is needed and short analysis times are also apparent advantages of CE and CZE in the analysis of wine. Capillary isotachophoresis (ITP), with conductivity, thermometric, and UV absorption detection, is suitable for the separation of various anionic constituents (organic acids and inorganic anions), currently occurring in wines (Masar et al., 2001). [Pg.298]

MIO. Moberg, U., Hjalmarsson, S-G., Arlinger, K., and Lundin, H., Preparative capillary isotachophoresis. Separation of ug amounts of some human serum proteins. In Elec-trofocusing and Isotachophoresis (B. J. Radola and D. Craesslin, eds.). Walter de Gruyter, Berlin, 1977. [Pg.293]


See other pages where Separation capillary isotachophoresis is mentioned: [Pg.386]    [Pg.274]    [Pg.706]    [Pg.44]    [Pg.382]    [Pg.156]    [Pg.271]    [Pg.206]    [Pg.24]    [Pg.32]    [Pg.680]    [Pg.190]    [Pg.19]    [Pg.221]    [Pg.388]    [Pg.59]    [Pg.293]    [Pg.20]    [Pg.915]    [Pg.260]    [Pg.136]    [Pg.322]    [Pg.474]    [Pg.711]    [Pg.379]    [Pg.332]    [Pg.156]    [Pg.15]    [Pg.183]    [Pg.200]    [Pg.217]   


SEARCH



Capillary isotachophoresis

Capillary isotachophoresis separation process

Capillary separation

Isotachophoresis

© 2024 chempedia.info