Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sensitization reactions ketone sensitizers

Photochemical reactions also include those in which light is not absorbed by the reactant directly, but by an added sensitizer. These are referred to as photosensitized reactions. Ketones such as acetophenone, a-substituted aceto-... [Pg.816]

A sensitive method for the flow injection analysis of Cu + is based on its ability to catalyze the oxidation of di-2-pyridyl ketone hydrazone (DPKH) by atmospheric oxygen. The product of the reaction is fluorescent and can be used to generate a signal when using a fluorometer as a detector. The yield of the reaction is at a maximum when the solution is made basic with NaOH. The fluorescence, however, is greatest in the presence of HCl. Sketch an FIA manifold that will be appropriate for this analysis. [Pg.663]

Usually, organoboranes are sensitive to oxygen. Simple trialkylboranes are spontaneously flammable in contact with air. Nevertheless, under carefully controlled conditions the reaction of organoboranes with oxygen can be used for the preparation of alcohols or alkyl hydroperoxides (228,229). Aldehydes are produced by oxidation of primary alkylboranes with pyridinium chi orochrom ate (188). Chromic acid at pH < 3 transforms secondary alkyl and cycloalkylboranes into ketones pyridinium chi orochrom ate can also be used (230,231). A convenient procedure for the direct conversion of terminal alkenes into carboxyUc acids employs hydroboration with dibromoborane—dimethyl sulfide and oxidation of the intermediate alkyldibromoborane with chromium trioxide in 90% aqueous acetic acid (232,233). [Pg.315]

Propiophenone. Propiophenone [93-55-0] (ethyl phenyl ketone) is a colorless Hquid with a flowery odor. It can be prepared by the Friedel-Crafts reaction of benzene and propionyl chloride in the presence of aluminum chloride (346), or by the catalytic reaction of benzoic acid and propionic acid in the presence of water (347). Propiophenone is commercially available (348), and is sold in Japan at 2700 Y/kg (349). It is used in the production of ephedrine, as a fragrance enhancer, and as a polymerization sensitizer. [Pg.501]

Methylarsine, trifluoromethylarsine, and bis(trifluoromethyl)arsine [371-74-4] C2HAsF, are gases at room temperature all other primary and secondary arsines are liquids or solids. These compounds are extremely sensitive to oxygen, and ia some cases are spontaneously inflammable ia air (45). They readily undergo addition reactions with alkenes (51), alkynes (52), aldehydes (qv) (53), ketones (qv) (54), isocyanates (55), and a2o compounds (56). They also react with diborane (43) and a variety of other Lewis acids. Alkyl haUdes react with primary and secondary arsiaes to yield quaternary arsenic compounds (57). [Pg.336]

Rapid, simple, quaUtative methods suitable for determining the presence of benzene in the workplace or surroundings have been utilized since the 1930s. Many early tests offered methods for detection of aromatics but were not specific for benzene. A straightforward test allowing selective detection of benzene involves nitration of a sample to y -dinitrobenzene and reaction of the resultant ether extract with an ethanoHc solution of sodium hydroxide and methyl ethyl ketone (2-butanone), followed by the addition of acetic acid to eliminate interferences from toluene and xylenes. Benzene imparts a persistent red color to the solution (87). The method is claimed to be sensitive to concentrations as low as 0.27 ppm benzene from 10 mL air samples. [Pg.46]

Photopolymerization reactions are widely used for printing and photoresist appHcations (55). Spectral sensitization of cationic polymerization has utilized electron transfer from heteroaromatics, ketones, or dyes to initiators like iodonium or sulfonium salts (60). However, sensitized free-radical polymerization has been the main technology of choice (55). Spectral sensitizers over the wavelength region 300—700 nm are effective. AcryUc monomer polymerization, for example, is sensitized by xanthene, thiazine, acridine, cyanine, and merocyanine dyes. The required free-radical formation via these dyes may be achieved by hydrogen atom-transfer, electron-transfer, or exciplex formation with other initiator components of the photopolymer system. [Pg.436]

The bicyclic product is formed by coupling of the two radical sites, while the alkene results from an intramolecular hydrogen-atom transfer. These reactions can be sensitized by aromatic ketones and quenched by typical triplet quenchers and are therefore believed to proceed via triplet excited states. [Pg.762]

The direct formation of a dimethyl ketal by reaction of the ketone with methanol is particularly sensitive to steric effects. Only cyclohexanones react under these conditions.In the steroid series only saturated 3-ketones form dimethyl ketals with methanol and acid although partial reaction of a 2-ketone has been observed in the presence of homogenous rhodium catalyst. ... [Pg.378]

The saturated 3-ketone can also be protected as the ethylene ketal, which is prepared directly by reaction with ethylene glycol or by exchange dioxo-lanation. Selective formation of 3-ethylenedioxy compounds is also possible, but the former method is not particularly effective in the presence of 6-, 17- or 20-ketones. However, the exchange dioxolanation technique is more sensitive to steric effects and good selectivity at C-3 can be achieved in the presence of a 17-ketone, provided the reagent does not contain glycol. ... [Pg.389]

TLC analysis of the crude reaction product reveals no additional products. Similarly quantitative results are obtained using benzene, /-butanol and ether as the solvents in the irradiation of (39). The reaction is less sensitive to oxygen than most ketone photolyses resulting in products from a-cleavage processes. [Pg.305]

Both types of processes, 7r -assisted y, -bond cleavage and P -bonding, have been invoked to operate in the phototransformations of the aldehyde-ketone (153) to products (155), (156) and (158). The conversions have been observed at room temperature in dioxane, t-butanol, ethanol and benzene using light of wavelengths 2537 A or above 3100 A or sensitization by acetophenone. The phosphorescing excited triple state of (153) is very similar to that of testosterone acetate (114), but its reactions are too rapid... [Pg.325]

Much better known are the fluonnatedphosphoranes, which have been widely used m the Wittig reaction for the preparation of fluoroolefms Difluoromethylena tion reactions have been effected by using a variety of conditions Treatment of dibromodifluoromethane with two equivalents of tns(dimethylammo)phosphine m carefully dried tnglyme yields a solution of bromodifluoromethylphosphonium broomide, which very effectively converts ketones to difluoromethylene derivatives A more sensitive reagent is prepared by the addihon of two equivalents of the phosphine to the reaction mixture of fluorohalomethane and a carbonyl compound [39, 40] (equation 40) (Table 14)... [Pg.581]

With enamines of cyclic ketones direct C alkylation occurs with allyl and propargyl as well as alkyl halides. The reaction is again sensitive to the polarity of the solvent (29). The pyrrolidine enamine of cyclohexanone on reaction with ethyl iodide in dioxane gave 25% of 2-ethylcyclohexanone on hydrolysis, while in chloroform the yield was increased to 32%. [Pg.121]

The enamines derived from cyclic ketones give the normal alkylated products, although there is some evidence that unstable cycloadducts are initially formed (55b). Thus the enamine (28) derived from cyclohexanone and pyrrolidine on reaction with acrylonitrile, acrylate esters, or phenyl vinyl sulfone gave the 2-alkylated cyclohexanones (63) on hydrolysis of the intermediates (31,32,55,56). These additions are sensitive to the polarity of the solvent. Thus (28) in benzene or dioxane gave an 80% yield of the... [Pg.127]

Dimethylfuran, in a sensitized reaction, gave 1,3-dimethylcyclopropene (the main product), isoprene, cis- and rran.s-l,3-pentadiene, 2-pentyne, and 1-methylcyclopropenyl methyl ketone (Scheme 7) (70JPC574) the ring contraction showed a high selectivity. [Pg.47]

A detailed study of the transformations of methylpyrazolylketones into acetylenes under the action of PCI5 and then a base indicates the sensitivity of these reactions to experimental conditions, the structure of the starting ketones, and the nature of the base (69TZV927 69KGS1055 76TZV2288). [Pg.14]

Alkylation of orgatiomatigatiese reagaits witli alkyl bromides can also be improved by adrlition of CuCl f3 mol96). Hie reactions proceed at room temperature and are complete witliin a few bouts [123, 130], Hie opening of epoxides is also improved under tliese conditions. Hie reaction also features good clienioselectivity, tolerating tlie presence of sensitive functions sucli as ketones t Sclieme 2.59) [130]. [Pg.71]

Substituents R, R at the starting oxime 1 can be H, alkyl, or aryl. The reaction conditions for the Beckmann rearrangement often are quite drastic (e.g. concentrated sulfuric acid at 120 °C), which generally limits the scope to less sensitive substrates. The required oxime can be easily prepared from the respective aldehyde or ketone and hydroxylamine. [Pg.32]

Another important synthetic method for the reduction of ketones and aldehydes to the corresponding methylene compounds is the Woljf-Kishner reduction. This reaction is carried out under basic conditions, and therefore can be applied for the reduction of acid-sensitive substrates it can thus be regarded as a complementary method. The experimental procedure for the Clemmensen reduction is simpler however for starting materials of high molecular weight the Wolff-Kishner reduction is more successful. [Pg.63]

In general however the various possible reaction pathways give rise to formation of a mixture of products. The type I-cleavage reaction is only of limited synthetic importance, but rather an interfering side-reaction—e.g. with an attempted Paterno-Buchi reaction, or when an aldehyde or ketone is used as sensitizer in a [2 -I- l -cy do addition reaction. [Pg.215]

The reaction is sensitive to the presence of water, which inhibits the migration of the third alkyl group and leads to dialkyl ketones (see Chapter 12, Section II). The convenience of the hydroboration reaction combined with the use of carbon monoxide at atmospheric pressure provides the most accessible route to many trialkylcarbinols. [Pg.111]


See other pages where Sensitization reactions ketone sensitizers is mentioned: [Pg.31]    [Pg.79]    [Pg.393]    [Pg.362]    [Pg.314]    [Pg.320]    [Pg.133]    [Pg.62]    [Pg.126]    [Pg.216]    [Pg.24]    [Pg.83]    [Pg.92]    [Pg.229]    [Pg.230]    [Pg.232]    [Pg.241]    [Pg.245]    [Pg.247]    [Pg.149]    [Pg.166]    [Pg.243]    [Pg.297]    [Pg.298]    [Pg.318]    [Pg.264]    [Pg.33]    [Pg.183]    [Pg.36]   
See also in sourсe #XX -- [ Pg.213 ]




SEARCH



Ketone sensitizer

Reactions sensitivities

Sensitization reactions

Sensitizers reactions

© 2024 chempedia.info