Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sensitivity AES

Because of its surface sensitivity, AES has been a valuable tool for identification of contaminants at Interfaces where delamlnatlon has occurred. Sometimes no contaminants are detected at Interfaces where delamlnatlon has occurred. Lack of evidence for contaminants can indicate mechanical reasons for the delamlnatlon. Specimens can be prepared by using adhesive tape to separate films or using a sharp point to peel back blister like features. Whenever possible both sides of the failed Interface should be analyzed. [Pg.130]

The following should be considered in order to detect the generation and development of noniinifomi deformation and cracks with high sensitivity. AE output is the accumulation of several signals caused by several factors, including wire defects, as well as plastic deformation, the lubricant condition and electrical noise. To improve the... [Pg.259]

Before the performance of the loading we have to apply 5 up to 12 sensors, according their size, on the cylindrical part of the drums and after a short check of the required sensitivity and the wave propagation the pneumatic pressure test monitored by AE can be performed. The selection of the sensors and their positions was performed earlier in pre-tests under the postulate, that the complete cylinder can be tested with the same sensitivity, reliability and that furthermore the localisation accuracy of defects in the on-line- and the post analysis is sufficient for the required purpose. For the flat eovers, which will be tested by specific sensors, the geometrical shape is so complicated, that we perform in this case only a defect determination with a kind of zone-location. [Pg.32]

The only meaningful solution is a pneumatic test in conjunction with an AE. Beside the high sensitivity of an AE and its reliability in combination with an established and proven data base, the method can be performed by experienced testing agencies easily and within short shut down period. A lot of 4 up to 9 drums can be tested within one day. [Pg.34]

The strong point of AES is that it provides a quick measurement of elements in the surface region of conducting samples. For elements having Auger electrons with energies hr the range of 100-300 eV where the mean free path of the electrons is close to its minimum, AES is considerably more surface sensitive than XPS. [Pg.1859]

A disadvantage of AES is that the intense electron beam easily causes damage to sensitive materials (polymers, insulators, adsorbate layers). Charging of insulating samples also causes serious problems. [Pg.1859]

ICP/AES). The mass spectrometric approach has introduced a wider ranging and more sensitive system for estimating element types and abundances in a huge range of sample types. [Pg.88]

An alternative mechanism of excess energy release when electron relaxation occurs is through x-ray fluorescence. In fact, x-ray fluorescence favorably competes with Auger electron emission for atoms with large atomic numbers. Figure 16 shows a plot of the relative yields of these two processes as a function of atomic number for atoms with initial K level holes. The cross-over point between the two processes generally occurs at an atomic number of 30. Thus, aes has much greater sensitivity to low Z elements than x-ray fluorescence. [Pg.280]

In aes, the resolution is largely independent of the characteristics of the analy2er or source and is dictated by the natural linewidth of the Auger line (usually several eV). Therefore, in using a CMA for aes, the analyst is more concerned with transmission (and hence, sensitivity) than with resolution. In contrast to xps, the optimhation of variables is achieved for aes in the CRR mode of operation. The large transmission of the CMA relative to the CHA make it the more desirable analy2er for aes. [Pg.284]

NifA proteins are of one of two types. One group consists of 02-sensitive NifA proteins, which are found in the rhizobia Bhodobacter and Ae spirillum. These proteins have a proposed iron-binding motif on a linker between the central and C-terminal domains that may form a redox-sensitive... [Pg.90]

Naiiow-line uv—vis spectia of free atoms, corresponding to transitions ia the outer electron shells, have long been employed for elemental analysis usiag both atomic absorption (AAS) and emission (AES) spectroscopy (159,160). Atomic spectroscopy is sensitive but destmctive, requiring vaporization and decomposition of the sample iato its constituent elements. Some of these techniques are compared, together with mass spectrometry, ia Table 4 (161,162). [Pg.317]

For the increase of sensitiveness of the voltamperometric determination Co(II) use o,o -dihydroxysubstituted azodyes (eriochrome red B and calces). The Co(II) determination can be conducted at potential of reduction of coordinating connection of Co(II)-azodye (E = - 0,9V) and directly the Co(II) (E = -1,2V, ammonia buffer solution) ions. The results of reseaixhes show that selectivity of the Co(II) determination in presence the Ni(II) and Pd(II) ions more high with the use of analytical signal at the potential -1,2V. Is it thus succeeded move aside potentials of peaks of reduction of the Ni(II) and Co(II) ions on a background ammoniac buffer solution from AE=0,2V to AE = 0,4-0,5V. The Co(II) determination can be conducted in presence 50-100 multiple surpluses Ni(II). Palladium in these conditions does not prevent to 60 multiple surplus. [Pg.132]

The linear power supply finds a very strong niehe within applieations where its ineffieieney is not important. These inelude wall-powered, ground-base equipment where foreed air eooling is not a problem and also those applieations in whieh the instrument is so sensitive to eleetrieal noise that it requires an eleetrieally quiet power supply—these produets might inelude audio and video amplifiers, RF reeeivers, and so forth. Linear regulators are also popular as loeal, board-level regulators. Here only a few watts are needed by the board, so the few watts of loss ean be aeeommodated by a simple heatsink. If dielee-trie isolation is desired from an ae input power souree it is provided by an ae transformer or bulk power supply. [Pg.11]

The degree of surface cleanliness or even ordering can be determined by REELS, especially from the intense VEELS signals. The relative intensity of the surface and bulk plasmon peaks is often more sensitive to surface contamination than AES, especially for elements like Al, which have intense plasmon peaks. Semiconductor surfaces often have surface states due to dangling bonds that are unique to each crystal orientation, which have been used in the case of Si and GaAs to follow in situ the formation of metal contacts and to resolve such issues as Fermi-level pinning and its role in Schottky barrier heights. [Pg.328]

In other articles in this section, a method of analysis is described called Secondary Ion Mass Spectrometry (SIMS), in which material is sputtered from a surface using an ion beam and the minor components that are ejected as positive or negative ions are analyzed by a mass spectrometer. Over the past few years, methods that post-ion-ize the major neutral components ejected from surfaces under ion-beam or laser bombardment have been introduced because of the improved quantitative aspects obtainable by analyzing the major ejected channel. These techniques include SALI, Sputter-Initiated Resonance Ionization Spectroscopy (SIRIS), and Sputtered Neutral Mass Spectrometry (SNMS) or electron-gas post-ionization. Post-ionization techniques for surface analysis have received widespread interest because of their increased sensitivity, compared to more traditional surface analysis techniques, such as X-Ray Photoelectron Spectroscopy (XPS) and Auger Electron Spectroscopy (AES), and their more reliable quantitation, compared to SIMS. [Pg.559]

SALI compares fiivorably with other major surface analytical techniques in terms of sensitivity and spatial resolution. Its major advantj e is the combination of analytical versatility, ease of quantification, and sensitivity. Table 1 compares the analytical characteristics of SALI to four major surfiice spectroscopic techniques.These techniques can also be categorized by the chemical information they provide. Both SALI and SIMS (static mode only) can provide molecular fingerprint information via mass spectra that give mass peaks corresponding to structural units of the molecule, while XPS provides only short-range chemical information. XPS and static SIMS are often used to complement each other since XPS chemical speciation information is semiquantitative however, SALI molecular information can potentially be quantified direedy without correlation with another surface spectroscopic technique. AES and Rutherford Backscattering (RBS) provide primarily elemental information, and therefore yield litde structural informadon. The common detection limit refers to the sensitivity for nearly all elements that these techniques enjoy. [Pg.560]

Laser ionization mass spectrometry or laser microprobing (LIMS) is a microanalyt-ical technique used to rapidly characterize the elemental and, sometimes, molecular composition of materials. It is based on the ability of short high-power laser pulses (-10 ns) to produce ions from solids. The ions formed in these brief pulses are analyzed using a time-of-flight mass spectrometer. The quasi-simultaneous collection of all ion masses allows the survey analysis of unknown materials. The main applications of LIMS are in failure analysis, where chemical differences between a contaminated sample and a control need to be rapidly assessed. The ability to focus the laser beam to a diameter of approximately 1 mm permits the application of this technique to the characterization of small features, for example, in integrated circuits. The LIMS detection limits for many elements are close to 10 at/cm, which makes this technique considerably more sensitive than other survey microan-alytical techniques, such as Auger Electron Spectroscopy (AES) or Electron Probe Microanalysis (EPMA). Additionally, LIMS can be used to analyze insulating sam-... [Pg.586]

Together with XPS and AES, SSIMS ranks as one of the principal surface analytical techniques. Because its sensitivity for elements greatly exceeds that of the other two techniques and much chemical information is available, its use is rapidly expanding in many fields of application. [Pg.86]


See other pages where Sensitivity AES is mentioned: [Pg.185]    [Pg.234]    [Pg.374]    [Pg.911]    [Pg.260]    [Pg.185]    [Pg.234]    [Pg.374]    [Pg.911]    [Pg.260]    [Pg.307]    [Pg.1264]    [Pg.1812]    [Pg.1823]    [Pg.2964]    [Pg.726]    [Pg.516]    [Pg.279]    [Pg.317]    [Pg.141]    [Pg.529]    [Pg.256]    [Pg.174]    [Pg.24]    [Pg.231]    [Pg.295]    [Pg.297]    [Pg.311]    [Pg.326]    [Pg.332]    [Pg.456]    [Pg.475]    [Pg.523]    [Pg.524]    [Pg.561]    [Pg.572]    [Pg.732]   
See also in sourсe #XX -- [ Pg.491 ]




SEARCH



AES

© 2024 chempedia.info