Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Semiconductors electronics

In n type semiconductors, electrons are tire majority carriers. Holes will also be present tlirough accidental incoriioration of acceptor impurities or, more importantly, tlirough tlie intentional creation of electron-hole pairs. Holes in n type and electrons in p type semiconductors are minority carriers. [Pg.2883]

The speed and general perfonnance of semiconductor electronics have been doubling and tlie cost halving every 18... [Pg.2896]

The range of photon energies (160 to 0.12 kJ/mol (38-0.03 kcal/mol)) within the infrared region corresponds to the energies of vibrational and rotational transitions of individual molecules, of electronic transitions in many semiconductors, and of vibrational transitions in crystalline lattices. Semiconductor electronics and crystal lattice transitions are beyond the scope of this article. [Pg.196]

Fig. 9. Schottky barrier band diagrams (a) a rare situation where the metal work function is less than the semiconductor electron work affinity resulting in an ohmic contact (b) normal Schottky barrier with barrier height When the depletion width Wis <10 nm, an ohmic contact forms. Fig. 9. Schottky barrier band diagrams (a) a rare situation where the metal work function is less than the semiconductor electron work affinity resulting in an ohmic contact (b) normal Schottky barrier with barrier height When the depletion width Wis <10 nm, an ohmic contact forms.
Eig. 1. Representation of the band stmcture of GaAs, a prototypical direct band gap semiconductor. Electron energy, E, is usually measured in electron volts relative to the valence, band maximum which is used as the 2ero reference. Crystal momentum, is in the first BriUouin 2one in units of 27r/a... [Pg.365]

The main advantages that compound semiconductor electronic devices hold over their siUcon counterparts He in the properties of electron transport, excellent heterojunction capabiUties, and semi-insulating substrates, which can help minimise parasitic capacitances that can negatively impact device performance. The abiUty to integrate materials with different band gaps and electronic properties by epitaxy has made it possible to develop advanced devices in compound semiconductors. The hole transport in compound semiconductors is poorer and more similar to siUcon. Eor this reason the majority of products and research has been in n-ty e or electron-based devices. [Pg.370]

Where b is Planck s constant and m and are the effective masses of the electron and hole which may be larger or smaller than the rest mass of the electron. The effective mass reflects the strength of the interaction between the electron or hole and the periodic lattice and potentials within the crystal stmcture. In an ideal covalent semiconductor, electrons in the conduction band and holes in the valence band may be considered as quasi-free particles. The carriers have high drift mobilities in the range of 10 to 10 cm /(V-s) at room temperature. As shown in Table 4, this is the case for both metallic oxides and covalent semiconductors at room temperature. [Pg.357]

D. B. Holt and D. C. Joy. SEM Microcharacterization of Semiconductors. Academic Press, London, 1989. A detailed examination of the applications of the SEM to semiconductor electronics. [Pg.84]

Solid-state electronic devices such as diodes, transistors, and integrated circuits contain p-n junctions in which a p-type semiconductor is in contact with an n-type semiconductor (Fig. 3.47). The structure of a p-n junction allows an electric current to flow in only one direction. When the electrode attached to the p-type semiconductor has a negative charge, the holes in the p-type semiconductor are attracted to it, the electrons in the n-type semiconductor are attracted to the other (positive) electrode, and current does not flow. When the polarity is reversed, with the negative electrode attached to the n-type semiconductor, electrons flow from the n-type semiconductor through the p-type semiconductor toward the positive electrode. [Pg.251]

Undoubtedly, these devides can still by far not compete with semiconductor electronic elements but the rapid improvement of the concept together with the potential development of better and more versatile organic polymers may allow applications in near future. [Pg.78]

Depending on the nature of the electrode and reaction, the carriers involved in an electrochemical reaction at a semiconductor electrode can be electrons from the conduction band (in the following to be called simply electrons), electrons from the valence band (holes), or both. The concentration of the minority carriers in semiconductors (electrons in p-type, and holes in n-type semiconductors) is always much... [Pg.250]

Fig. 15. Schematic energy diagram of the n-type semiconductor electronic bands at the solid/liquid interface modulated by discontinuous metal coating ... Fig. 15. Schematic energy diagram of the n-type semiconductor electronic bands at the solid/liquid interface modulated by discontinuous metal coating ...
At room temperature, unsaturated vapours of the above specified polar and nonpolar liquids do not influence considerably the rate of adsorption and chemical activity of not only adsorbed oxygen layers, but also of acceptors of semiconductor electrons of another type, namely, of alkyl radicals [54]. This is seen from the electric conductivity of ZnO films with adsorbed alkyl radicals or oxygen being invariable in the atmosphere of the saturated vapours of the above specified solvents. In the case of oxygen, this can be also seen from the fact that the oxygen concentration features no decrease. [Pg.263]

The above results on detection of trace concentrations of oxygen by sine oxide films (and titanium oxide films, to a lesser degree), as well as the results on detection of alkyl radicals, which are acceptors of semiconductor electrons, show that the behaviour and electric properties of... [Pg.266]

Variation of the Au/ZnO - sensor electrical conductivity under the action of RGMAs is a complicated process including a stage of restructuring the semiconductor electron subsystem due to the excitation en-... [Pg.329]

To further substantiate the proposed model, they have carried out some investigations connected with modification of semiconductor electron subsystem [174, 175]. Temperature is one of the important factors. Having no effect on the electron emission from the metal under the action of RGMAs, temperature strongly affects the current-transfer processes at the metal - semiconductor contacts. The impact of temperature on the interaction of RGMAs with Au/ZnO structures can be evaluated as follows. [Pg.335]

The different types of quinones active in photosynthesis are being used as electron acceptors in solar cells. The compounds such as Fd and NADP could also be used as electron/proton acceptors in the photoelectrochemical cells. Several researchers have attempted the same approach with a combination of two or more solid-state junctions or semiconductor-electrolyte junctions using bulk materials and powders. Here, the semiconductors can be chosen to carry out either oxygen- or hydrogen-evolving photocatalysis based on the semiconductor electronic band structure. [Pg.264]

Creation and Elimination of Electronic Defects These are the normal intrinsic electrons and holes present in a semiconductor. Electrons can combine with holes to be eliminated from the crystal thus ... [Pg.321]

We begin by recapitulating a few facts about semiconductors. Electronic states in a perfect semiconductor are delocalized just as in metals, and there are bands of allowed electronic energies. According to a well-known theorem [1], bands that are either completely filled1... [Pg.81]

Photodiodes make use of the unique properties of semiconductors, such as silicon. Silicon can be doped with impurities to make it either electron rich (an n-type semiconductor) or electron poor (a p-type semiconductor). When an n-type semiconductor is in contact with a p-type semiconductor, electronic changes occur at the boundary, or junction. A photodiode is a p-n junction constructed with the top p layer so thin that it is transparent to fight. Light shining through the p layer creates additional free electrons in the n layer that can diffuse to the p layer, thus creating an electrical current that depends on the intensity of the fight. This small current is easily amplified and measured. [Pg.212]

The distribution of the exchange transfer current of redox electrons o(e), which corresponds to the state density curves shown in Fig. 8-11, is illustrated for both metal and semiconductor electrodes in Fig. 8-12 (See also Fig. 8-4.). Since the state density of semiconductor electrons available for electron transfer exists only in the conduction and valence bands fairly away from the Fermi level nsc), and since the state density of redox electrons available for transfer decreases remarkably with increasing deviation of the electron level (with increasing polarization) from the Fermi level CFciiEDax) of the redox electrons, the exchange transfer current of redox electrons is fairly small at semiconductor electrodes compared with that at metal electrodes as shown in Fig. 8-12. [Pg.250]

In the equilibriiun of interfacial redox reactions of the adsorbed protons and hydrogens, the Fermi level of semiconductor electrons at the electrode interface equals the Fermi level e p(h /h) of interfacial redox electrons in the adsorbed protons and hydrogens. The Fermi level e gc) th interface of semiconductor electrode depends on the potential /l< )sc of the space charge layer as shown in Eqn. 9-66 ... [Pg.318]

Electronic devices that operate using the spin of the electron and not just its electric charge are on the way to becoming a multibillion-dollar industry—and may lead to quantum microchips (4). As progress in the miniaturization of semiconductor electronic devices leads toward chip features smaller than lOOnm in size, device engineers and physicists are inevitably faced with the fast-approaching presence of quantum mechanics—that counterintuitive, and to some mysterious, realm of physics wherein wavelike properties control the behavior of electrons. [Pg.341]

F. Schubert, Delta-Doping of Semiconductors Electronic, Optical, and Structural Properties... [Pg.300]

The re arch in catalysis is still one of the driving forces for interface science. One can certainly add to the topics of interface physics the whole new field of interface problems that is about to spring out of the new high Tc superconducting ceramics, i.e. the fundamental problem of the matching of the superconducting carriers wave-functions with the normal state metal or semiconductor electron states, the super-conductor-superconductor interfaces and so on, as well as the wide open discovery field for devices and applications. [Pg.97]

Semiconductor electrodes can be used in galvanic cells like metal electrodes and a controlled electrode potential can be applied by means of a potentiostat, if the electrode can be contacted with a suitable metal without formation of a barrier layer (ohmic contact). Suitable techniques for ohmic contacts have been worked out in connection with semiconductor electronics. Surface treatment is important for the properties of semiconductor electrodes in all kind of charge transfer processes and especially in the photoresponse. Mechanical polishing generates a great number of new electronic states underneath the surface 29> which can act as quenchers for excited molecules at the interface. Therefore, sufficient etching is imperative for studying photocurrents caused by excited dyes. [Pg.46]


See other pages where Semiconductors electronics is mentioned: [Pg.135]    [Pg.292]    [Pg.136]    [Pg.421]    [Pg.524]    [Pg.254]    [Pg.229]    [Pg.39]    [Pg.349]    [Pg.463]    [Pg.175]    [Pg.194]    [Pg.185]    [Pg.555]    [Pg.524]    [Pg.379]    [Pg.417]    [Pg.127]    [Pg.420]   
See also in sourсe #XX -- [ Pg.23 ]




SEARCH



Electronic semiconductor

Electrons semiconductors

© 2024 chempedia.info