Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Semiconductor electrodes double-layer

While many of the standard electroanalytical techniques utilized with metal electrodes can be employed to characterize the semiconductor-electrolyte interface, one must be careful not to interpret the semiconductor response in terms of the standard diagnostics employed with metal electrodes. Fundamental to our understanding of the metal-electrolyte interface is the assumption that all potential applied to the back side of a metal electrode will appear at the metal electrode surface. That is, in the case of a metal electrode, a potential drop only appears on the solution side of the interface (i.e., via the electrode double layer and the bulk electrolyte resistance). This is not the case when a semiconductor is employed. If the semiconductor responds in an ideal manner, the potential applied to the back side of the electrode will be dropped across the internal electrode-electrolyte interface. This has two implications (1) the potential applied to a semiconducting electrode does not control the electrochemistry, and (2) in most cases there exists a built-in barrier to charge transfer at the semiconductor-electrolyte interface, so that, electrochemical reversible behavior can never exist. In order to understand the radically different response of a semiconductor to an applied external potential, one must explore the solid-state band structure of the semiconductor. This topic is treated at an introductory level in References 1 and 2. A more complete discussion can be found in References 3, 4, 5, and 6, along with a detailed review of the photoelectrochemical response of a wide variety of inorganic semiconducting materials. [Pg.856]

Fig. 4.1 Structure of the electric double layer and electric potential distribution at (A) a metal-electrolyte solution interface, (B) a semiconductor-electrolyte solution interface and (C) an interface of two immiscible electrolyte solutions (ITIES) in the absence of specific adsorption. The region between the electrode and the outer Helmholtz plane (OHP, at the distance jc2 from the electrode) contains a layer of oriented solvent molecules while in the Verwey and Niessen model of ITIES (C) this layer is absent... Fig. 4.1 Structure of the electric double layer and electric potential distribution at (A) a metal-electrolyte solution interface, (B) a semiconductor-electrolyte solution interface and (C) an interface of two immiscible electrolyte solutions (ITIES) in the absence of specific adsorption. The region between the electrode and the outer Helmholtz plane (OHP, at the distance jc2 from the electrode) contains a layer of oriented solvent molecules while in the Verwey and Niessen model of ITIES (C) this layer is absent...
It should be noted that the study of the properties of an electrical double layer at semiconductor electrodes corresponds to study of the cell (in the simplest formulation)... [Pg.250]

Pleskov, Yu. V., Electric double layer on semiconductor electrode, CTE, 1, 291 (1980). [Pg.255]

For semiconductor electrodes and also for the interface between two immiscible electrolyte solutions (ITIES), the greatest part of the potential difference between the two phases is represented by the potentials of the diffuse electric layers in the two phases (see Eq. 4.5.18). The rate of the charge transfer across the compact part of the double layer then depends very little on the overall potential difference. The potential dependence of the charge transfer rate is connected with the change in concentration of the transferred species at the boundary resulting from the potentials in the diffuse layers (Eq. 4.3.5), which, of course, depend on the overall potential difference between the two phases. In the case of simple ion transfer across ITIES, the process is very rapid being, in fact, a sort of diffusion accompanied with a resolvation in the recipient phase. [Pg.289]

Fig. 6-99. An interfacial electric double layer on semiconductor electrodes a = charge of surface states 0.1 = interfadal charge of adsorbed ions IHP = inner Helmholtz plane. Fig. 6-99. An interfacial electric double layer on semiconductor electrodes a = charge of surface states 0.1 = interfadal charge of adsorbed ions IHP = inner Helmholtz plane.
Figure 5-41 illustrates the profile of electron level across the interfadal double layer of a semiconductor electrode (A) in the state of band edge level pinning and (B) in the state of Fermi level pinning. In Fig. 5-41 the cathodic polarization... [Pg.172]

Fig. 6-53. Interfadal charges, electron levels and electrostatic potential profile across an electric double layer with contact adsorption of dehydrated ions on semiconductor electrodes ogc = space charge o = charge of surface states = ionic charge due to contact adsorption dsc = thickness of space charge layer da = thickness of compact la3rer. Fig. 6-53. Interfadal charges, electron levels and electrostatic potential profile across an electric double layer with contact adsorption of dehydrated ions on semiconductor electrodes ogc = space charge o = charge of surface states = ionic charge due to contact adsorption dsc = thickness of space charge layer da = thickness of compact la3rer.
Fig. 5-56. Capacity Csc of a space charge layer and capacity Ch of a compact layer calculated for an n-type semiconductor electrode as a function of electrode potential Ct = total capacity of an interfadal double layer (1/Ct = 1/ Csc+ 1/Ch). [From Gerisdier, 1990.]... Fig. 5-56. Capacity Csc of a space charge layer and capacity Ch of a compact layer calculated for an n-type semiconductor electrode as a function of electrode potential Ct = total capacity of an interfadal double layer (1/Ct = 1/ Csc+ 1/Ch). [From Gerisdier, 1990.]...
Fig. 5-60. Equivalent circuit for an interfacial electric double layer comprising a space charge layer, a surface state and a compact la3 er at semiconductor electrodes Csc = capacity of a space charge layer C = capacity of a surface state Ch = capacity of a compact layer An = resistance of charging and discharging the surface state. Fig. 5-60. Equivalent circuit for an interfacial electric double layer comprising a space charge layer, a surface state and a compact la3 er at semiconductor electrodes Csc = capacity of a space charge layer C = capacity of a surface state Ch = capacity of a compact layer An = resistance of charging and discharging the surface state.
As shown in Fig. 9-9, the interfacial double layer of semiconductor electrode consists of a space charge layer with the potential of in the semiconductor and a compact layer with the potential of at the electrode interface. The potential 4+sc across the space charge layer controls the process of ionization of smface atoms (Eqn. 9-24) whereas, the potential across the compact layer controls the process of transfer of surface ions (Eqn. 9-33). The overvoltage iiac across the space charge layer and the overvoltage t b across the compact layer are eiq)ressed, respectively, in Eqn. 9-34 ... [Pg.302]

In the active state, the dissolution of metals proceeds through the anodic transfer of metal ions across the compact electric double layer at the interface between the bare metal and the aqueous solution. In the passive state, the formation of a thin passive oxide film causes the interfadal structure to change from a simple metal/solution interface to a three-phase structure composed of the metal/fUm interface, a thin film layer, and the film/solution interface [Sato, 1976, 1990]. The rate of metal dissolution in the passive state, then, is controlled by the transfer rate of metal ions across the film/solution interface (the dissolution rate of a passive semiconductor oxide film) this rate is a function of the potential across the film/solution interface. Since the potential across the film/solution interface is constant in the stationary state of the passive oxide film (in the state of band edge level pinning), the rate of the film dissolution is independent of the electrode potential in the range of potential of the passive state. In the transpassive state, however, the potential across the film/solution interface becomes dependent on the electrode potential (in the state of Fermi level pinning), and the dissolution of the thin transpassive film depends on the electrode potential as described in Sec. 11.4.2. [Pg.382]

Electrochemistry at Electrodes is concerned with the structure of electrical double layers and the characteristic of charge transfer reactions across the electrode/electrolyte interface. The purpose of this text is to integrate modem electrochemistry with semiconductor physics this approach provides a quantitative basis for understanding electrochemistiy at metal and semiconductor electrodes. [Pg.406]

Green M (1959) Electrochemistry of the semiconductor-electrolyte electrode. 1 The electrical double layer. J Chem Phys 31 200-203... [Pg.185]

To a first approximation, the BLM can be considered to behave like a parallel plate capacitor immersed in a conducting electrolyte solution. In reality, even such a thin insulator as the modified BLM (designated by and R, in Fig. 108) could block the specific adsorption of some species from solution and/or modify the electrochemical behavior of the system. Similarly, System C may turn out to be a semiconductor(l)-insulator-semiconductor(2) (SIS ) rather than a semiconductor(l)-semiconductor(2) (SS ) junction. The obtained data, however, did not allow for an unambiguous distinction between these two alternative junctions we have chosen the simpler of the two [652], The equivalent circuit describing the working (Ew), the reference (Eg), and the counter (Ec) electrodes the resistance (Rm) and the capacitance (C of the BLM the resistance (R ) and capacitance (Ch) of the Helmholtz electrical double layer surrounding the BLM as well as the resistance of the electrolyte solution (RSO ) is shown in Fig. 108a [652],... [Pg.145]

Fig. 3. The structure of electrical double layer at a semiconductor-electrolyte interface (a) and the distribution of the potential (b) and charge (c) at the interface. The electrode is charged negatively. is the space-charge region thickness, La is the Helmholtz layer thickness, Qlc and Qtl are the charge of the semiconductor and ionic plates of the double layer, respectively (for further notations see the text). Fig. 3. The structure of electrical double layer at a semiconductor-electrolyte interface (a) and the distribution of the potential (b) and charge (c) at the interface. The electrode is charged negatively. is the space-charge region thickness, La is the Helmholtz layer thickness, Qlc and Qtl are the charge of the semiconductor and ionic plates of the double layer, respectively (for further notations see the text).
Solid state materials that can conduct electricity, are electrochemically of interest with a view to (a) the conduction mechanism, (b) the properties of the electrical double layer inside a solid electrolyte or semiconductor, adjacent to an interface with a metallic conductor or a liquid electrolyte, (c) charge-transfer processes at such interfaces, (d) their possible application in systems of practical interest, e.g. batteries, fuel cells, electrolysis cells, and (e) improvement of their operation in these applications by modifications of the electrode surface, etc. [Pg.277]


See other pages where Semiconductor electrodes double-layer is mentioned: [Pg.114]    [Pg.1949]    [Pg.545]    [Pg.233]    [Pg.40]    [Pg.321]    [Pg.216]    [Pg.229]    [Pg.180]    [Pg.249]    [Pg.362]    [Pg.168]    [Pg.169]    [Pg.181]    [Pg.407]    [Pg.74]    [Pg.228]    [Pg.132]    [Pg.47]    [Pg.268]    [Pg.264]    [Pg.306]    [Pg.215]    [Pg.100]    [Pg.343]    [Pg.348]    [Pg.73]    [Pg.175]    [Pg.174]    [Pg.176]   
See also in sourсe #XX -- [ Pg.263 , Pg.264 , Pg.265 , Pg.266 , Pg.267 , Pg.268 , Pg.269 ]




SEARCH



Double layer semiconductor

Electric Double Layer at Semiconductor Electrodes

Electrode double-layer

Electrodes layers

Semiconductor electrodes

Semiconductor layered

© 2024 chempedia.info