Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Self lead oxides

AB aggregation stimulates ROS production, which may lead to cyclic or self-propagating oxidative damage. The DHA metabolite neuroprotectin D1 promoted neuronal survival and anti-apoptotic pathways that attenuated AB42 neurotoxicity (Lukiw et al., 2005). AD and mild cognitive disorder subjects also showed lower levels of antioxidant defense systems. [Pg.255]

Inhibitors of lead oxidation reduce the rate of the self-discharge reactions and prolong battery storage life. [Pg.313]

Platinum-free catalysts usually feature two general problems stability in acidic enviromnents, and that none of the alternatives has so far reached the activity level of platinum. The first criterion excludes almost all pure non-noble metals as well as their alloys, unless an extraordinary stability combined with a ehange of the non-noble properties can be observed. The leaching of metal ions from the catalyst catalyses the formation of hydrogen peroxide, which leads to a self-destroying oxidation of the catalyst and to membrane degradation. " ... [Pg.78]

Various types of lead oxides are used in large amounts especially if resistance against water, acids, and alkaline solutions is required. With lead oxides, scorch times can be reduced therefore, particular caution is required in formulation, mixing, and processing. Lead oxides, on the other hand, enable self curing CR compounds. A dispersed form should be used for health reasons. [Pg.16]

VII Lead oxide (instead of ZnO/MgO) 20 self curing -compounds... [Pg.18]

The deformation of oxide scale is also related to the temperature. At higher temperatures, the oxide can have a greater viscous relaxation, leading to a reduced stress for the same radius of curvature. This stress-related self-limiting oxidation can be used to prepare Si nanowires down to 5 nm in diameter with high reproducibility. [Pg.526]

Various other soft materials without the layer—lattice stmcture are used as soHd lubricants (58), eg, basic white lead or lead carbonate [598-63-0] used in thread compounds, lime [1305-78-8] as a carrier in wire drawing, talc [14807-96-6] and bentonite [1302-78-9] as fillers for grease for cable pulling, and zinc oxide [1314-13-2] in high load capacity greases. Graphite fluoride is effective as a thin-film lubricant up to 400°C and is especially useful with a suitable binder such as polyimide varnish (59). Boric acid has been shown to have promise as a self-replenishing soHd composite (60). [Pg.250]

Sorbic acid is oxidized rapidly in the presence of molecular oxygen or peroxide compounds. The decomposition products indicate that the double bond farthest from the carboxyl group is oxidized (11). More complete oxidation leads to acetaldehyde, acetic acid, fumaraldehyde, fumaric acid, and polymeric products. Sorbic acid undergoes Diels-Alder reactions with many dienophiles and undergoes self-dimerization, which leads to eight possible isomeric Diels-Alder stmctures (12). [Pg.282]

Sihcon carbide is comparatively stable. The only violent reaction occurs when SiC is heated with a mixture of potassium dichromate and lead chromate. Chemical reactions do, however, take place between sihcon carbide and a variety of compounds at relatively high temperatures. Sodium sihcate attacks SiC above 1300°C, and SiC reacts with calcium and magnesium oxides above 1000°C and with copper oxide at 800°C to form the metal sihcide. Sihcon carbide decomposes in fused alkahes such as potassium chromate or sodium chromate and in fused borax or cryohte, and reacts with carbon dioxide, hydrogen, ak, and steam. Sihcon carbide, resistant to chlorine below 700°C, reacts to form carbon and sihcon tetrachloride at high temperature. SiC dissociates in molten kon and the sihcon reacts with oxides present in the melt, a reaction of use in the metallurgy of kon and steel (qv). The dense, self-bonded type of SiC has good resistance to aluminum up to about 800°C, to bismuth and zinc at 600°C, and to tin up to 400°C a new sihcon nitride-bonded type exhibits improved resistance to cryohte. [Pg.465]

In the presence of aluminum, oxidative degradation or dimerization supply HCl for the formation of aluminum chloride, which catalyzes further dimerization to hexachlorobutene. The latter is decomposed by heat to give more HCl. The result is a self-sustaining pathway to solvent decomposition. Sufficient quantities of aluminum can cause violent decomposition, which can lead to mnaway reactions (1,2). Commercial grades of trichloroethylene are stabilized to prevent these reactions in normal storage and use conditions. [Pg.23]

Like many other combustible Hquids, self-heating of ethyleneamines may occur by slow oxidation in absorbent or high-surface-area media, eg, dumped filter cake, thermal insulation, spill absorbents, and metal wine mesh (such as that used in vapor mist eliminators). In some cases, this may lead to spontaneous combustion either smoldering or a flame may be observed. These media should be washed with water to remove the ethyleneamines, or thoroughly wet prior to disposal in accordance with local and Eederal regulations. [Pg.46]

The formation of a-acetoxyketones by oxidation of enamines with thallic acetate has been studied in detail (27) and found to be of preparative value (80 % yields) particularly in five- and six-membered-ring ketone derivatives. Enamines of linear or seven-membered-ring ketones were oxidized also, but at very much slower rates. Enamines of aldehydes with a-hydrogen substituents underwent self-eondensations during the oxidation reactions. Lead tetraacetate was less satisfactory as an oxidizing agent. [Pg.412]

Since the early days of using PVC separators in stationary batteries, there has been a discussion about the generation of harmful substances caused by elevated temperatures or other catalytic influences, a release of chloride ions could occur which, oxidized to perchlorate ions, form soluble lead salts resulting in enhanced positive grid corrosion. Since this effect proceeds by self-acceleration, the surrounding conditions such as temperature and the proneness of alloys to corrosion as well as the quality of the PVC have to be taken carefully into account. [Pg.277]

The ligand group can be introduced either on the meso or on the /5-pyrrole position of the porphyrin ring, but the synthesis of the meso-functionalized derivatives is easier and has been more widely exploited. Balch (50-53) reported that the insertion of trivalent ions such as Fe(III) (32) and Mn(III) (33) into octaethyl porphyrins functionalized at one meso position with a hydroxy group (oxophlorins) leads to the formation of a dimeric head-to-tail complex in solution (Fig. 11a) (50,51). An X-ray crystal structure was obtained for the analogous In(III) complex (34), and this confirmed the head-to-tail geometry that the authors inferred for the other dimers in solution (53) (Fig. lib). The dimers are stable in chloroform but open on addition of protic acids or pyridine (52). The Fe(III) octaethyloxophlorin dimer (52) is easily oxidized by silver salts. The one-electron oxidation is more favorable than for the corresponding monomer or p-oxo dimer, presumably because of the close interaction of the 7r-systems in the self-assembled dimer. [Pg.230]

Self-assembled nanorods of vanadium oxide bundles were synthesized by treating bulk V2O5 with high intensity ultrasound [34]. By prolonging the duration of ultrasound irradiation, uniform, well defined shapes and surface structures and smaller size of nanorod vanadium oxide bundles were obtained. Three steps which occur in sequence have been proposed for the self-assembly of nanorods into bundles (1) Formation of V2O5 nuclei due to the ultrasound induced dissolution and a further oriented attachment causes the formation of nanorods (2) Side-by-side attachment of individual nanorods to assemble into nanorods (3) Instability of the self-assembled V2O5 nanorod bundles lead to the formation of V2O5 primary nanoparticles. It is also believed that such nanorods are more active for n-butane oxidation. [Pg.200]


See other pages where Self lead oxides is mentioned: [Pg.575]    [Pg.5]    [Pg.575]    [Pg.546]    [Pg.563]    [Pg.90]    [Pg.196]    [Pg.1098]    [Pg.165]    [Pg.98]    [Pg.168]    [Pg.465]    [Pg.315]    [Pg.2317]    [Pg.909]    [Pg.584]    [Pg.282]    [Pg.117]    [Pg.120]    [Pg.69]    [Pg.98]    [Pg.327]    [Pg.91]    [Pg.317]    [Pg.240]    [Pg.384]    [Pg.32]    [Pg.153]    [Pg.246]    [Pg.58]    [Pg.125]    [Pg.262]    [Pg.1440]    [Pg.350]   
See also in sourсe #XX -- [ Pg.161 ]




SEARCH



Lead oxidation

Self-oxidation

© 2024 chempedia.info