Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Trivalent ions

Ligand substitution on [Mo(H20)6] shows a strong rate dependence on the nature of the substituting ligand consistent with the operation of an mechanism as exemplified by the substitution by NCS in equation (7). A spectrophotometric variable-pressure study of this reaction yields kf(298.2 K) = k,Ko) = AH = 67.2 kJ mol , A5 = -29.2 J K mol , and [Pg.223]


Trivalent ( classical carbenium ions contain an sp -hybridized electron-deficient carbon atom, which tends to be planar in the absence of constraining skeletal rigidity or steric interference. The carbenium carbon contains six valence electrons thus it is highly electron deficient. The structure of trivalent carbocations can always be adequately described by using only two-electron two-center bonds (Lewis valence bond structures). CH3 is the parent for trivalent ions. [Pg.147]

The site preference of several transition-metal ions is discussed in References 4 and 24. The occupation of the sites is usually denoted by placing the cations on B-sites in stmcture formulas between brackets. There are three types of spinels normal spinels where the A-sites have all divalent cations and the B-sites all trivalent cations, eg, Zn-ferrite, [Fe ]04j inverse spinels where all the divalent cations are in B-sites and trivalent ions are distributed over A- and B-sites, eg, Ni-ferrite, Fe Fe ]04 and mixed spinels where both divalent and trivalent cations are distributed over both types of sites,... [Pg.188]

Electroanalytical chemistry is one of the areas where advantage of the unique properties of SAMs is clear, and where excellent advanced analytical strategies can be utilized, especially when coupled with more complex SAM architectures. There are a number of examples where redox reactions are used to detect biomaterials (357,358), and where guest—host chemistry has been used to exploit specific interactions (356,359). Ion-selective electrodes are an apphcation where SAMs may provide new technologies. Selectivity to divalent cations such as Cu " but not to trivalent ions such as Fe " has been demonstrated (360). [Pg.545]

Pure and almost stoichiometric NiO shows, therefore, a very low conductivity of about 10 (Hem) at 25°C but, as illustrated in Figure 7, this value can be increased to about 1 (Hem) by the addition of lithium (11). This stabilizes the formation of the Nfi" states at a higher concentration, resulting in higher and more reproducible conductivities. Similarly, the insulating characteristics of NiO can be improved by the addition of a stable trivalent ion such as Cr " in soHd solution. This addition decreases the fraction of Nfi" ions formed. Because electron transfer between Ni " and Cr " is not favorable, the overall conductivity is substantially decreased. [Pg.358]

Sohd solutions of ceria with trivalent ions, eg, Y and La, can readily be formed. The ions substitute for the tetravalent Ce and introduce one oxygen vacancy for every two ions. The dopant ions and the oxygen vacancies form charge associates. The resulting defect-fluorites have good oxide... [Pg.367]

Discernible associative character is operative for divalent 3t5 ions through manganese and the trivalent ions through iron, as is evident from the volumes of activation in Table 4. However, deprotonation of a water molecule enhances the reaction rates by utilising a conjugate base 7T- donation dissociative pathway. As can be seen from Table 4, there is a change in sign of the volume of activation AH. Four-coordinate square-planar molecules also show associative behavior in their reactions. [Pg.170]

Figure 30.3 Variation with atomic number of some properties of La and the lanthanides A, the third ionization energy (fa) B, the sum of the first three ionization energies ( /) C, the enthalpy of hydration of the gaseous trivalent ions (—A/Zhyd)- The irregular variations in I3 and /, which refer to redox processes, should be contrasted with the smooth variation in A/Zhyd, for which the 4f configuration of Ln is unaltered. Figure 30.3 Variation with atomic number of some properties of La and the lanthanides A, the third ionization energy (fa) B, the sum of the first three ionization energies ( /) C, the enthalpy of hydration of the gaseous trivalent ions (—A/Zhyd)- The irregular variations in I3 and /, which refer to redox processes, should be contrasted with the smooth variation in A/Zhyd, for which the 4f configuration of Ln is unaltered.
The prespective to be gained thus far is that in order to pass through a lipid layer an ion must have an appropriate polar shell provided in large part by the carrier or channel structure which by virtue of its conformation and by also having lipophilic side chains provides for the polar shell to lipid shell transition. While the relative permeability of monovalent vs divalent and trivalent ions can be qualitatively appreciated from the z2 term in Eqn 2, as indicated in Figure 1B, it is essential to know structural and mechanistic detail in order even qualitatively to understand anion vs cation selectivity and to understand selectivity among monovalent cations. [Pg.179]

Allmann found that when suitable trivalent ions were introduced during the precipitation of the hydroxides of Mg, Zn, Mn, Fe, Co, and Ni, these were incorporated in the lattice and the structure changed from the brucite (Mg(OH)2) to the pyroaurite ([Mg6Fe2(OH)l6] [CO,- 4H20]) type of structure [68], One of the nickel materials he prepared was an Ni/Al hydroxide. Axmann et al. [69-71] have given the nickel compounds the general formula... [Pg.144]

Most of the work on pyroaurite materials has been done on materials with Fe [68-72, 76, 77], Co [68, 75, 78], Mn [72, 79], or Al [68, 70, 72] substitutions. When at least 20% on the Ni atoms are replaced by the trivalent substituent, the materials are stable in concentrated KOH. In many ways the pyroaurite phase is similar to -Ni(OH)2. Thus substitution of 20% of the Ni with these trivalent ions stabilize the operation of the electrode in the al y cycle in concentrated KOH. [Pg.145]

It should be emphasized that whereas the theoretical modelling of An3+ spectra in the condensed phase has reached a high degree of sophistication, the type of modelling of electronic structure of the (IV) and higher-valent actinides discussed here is restricted to very basic interactions and is in an initial state of development. The use of independent experimental methods for establishing the symmetry character of observed transitions is essential to further theoretical interpretation just as it was in the trivalent ion case. [Pg.196]

Figure 7-2. Effective ionic radii of high- and low-spin divalent and trivalent ions of the first row transition elements. The filled points represent high-spin ions. Figure 7-2. Effective ionic radii of high- and low-spin divalent and trivalent ions of the first row transition elements. The filled points represent high-spin ions.
Divalent and trivalent ions can precipitate PAA, and this phenomenon is related to the loss of a hydration region. Such precipitation is to be distinguished from salting-out effects which occur with high concentrations of monovalent ions. [Pg.77]

The ligand group can be introduced either on the meso or on the /5-pyrrole position of the porphyrin ring, but the synthesis of the meso-functionalized derivatives is easier and has been more widely exploited. Balch (50-53) reported that the insertion of trivalent ions such as Fe(III) (32) and Mn(III) (33) into octaethyl porphyrins functionalized at one meso position with a hydroxy group (oxophlorins) leads to the formation of a dimeric head-to-tail complex in solution (Fig. 11a) (50,51). An X-ray crystal structure was obtained for the analogous In(III) complex (34), and this confirmed the head-to-tail geometry that the authors inferred for the other dimers in solution (53) (Fig. lib). The dimers are stable in chloroform but open on addition of protic acids or pyridine (52). The Fe(III) octaethyloxophlorin dimer (52) is easily oxidized by silver salts. The one-electron oxidation is more favorable than for the corresponding monomer or p-oxo dimer, presumably because of the close interaction of the 7r-systems in the self-assembled dimer. [Pg.230]

Flocculating agents can be simple electrolytes that are capable of reducing the zeta potential of suspended charged particles. Examples include small concentrations (0.01-1%) of monovalent ions (e.g., sodium chloride, potassium chloride) and di- or trivalent ions (e.g., calcium salts, alums, sulfates, citrates or phosphates) [80-83], These salts are often used jointly in the formulations as pH buffers and flocculating agents. Controlled flocculation of suspensions can also be achieved by the addition of polymeric colloids or alteration of the pH of the preparation. [Pg.262]

Most divalent and trivalent ions, with the exception of the alkaline-earth metals, are effectively chelated by the hydroxycarboxylates citric and tartaric acid, and citric acid will also sequester iron in the presence of ammonia. Another hydroxycarboxylate, gluconic acid, is especially useful in caustic soda solution and as a general-purpose sequestering agent. [Pg.54]


See other pages where Trivalent ions is mentioned: [Pg.190]    [Pg.139]    [Pg.140]    [Pg.830]    [Pg.139]    [Pg.259]    [Pg.33]    [Pg.34]    [Pg.8]    [Pg.443]    [Pg.359]    [Pg.135]    [Pg.429]    [Pg.1512]    [Pg.237]    [Pg.324]    [Pg.200]    [Pg.730]    [Pg.14]    [Pg.346]    [Pg.677]    [Pg.678]    [Pg.269]    [Pg.205]    [Pg.820]    [Pg.132]    [Pg.138]    [Pg.246]    [Pg.184]    [Pg.66]    [Pg.146]    [Pg.848]    [Pg.248]   
See also in sourсe #XX -- [ Pg.548 ]




SEARCH



Trivalent

© 2024 chempedia.info