Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Section 5. Physical Properties

As discussed in the previous section physical properties usually sensitively depend on predicted structure or on potentials used. Apart from direct structural determination methods NMR and Infrared spectroscopic measurements are useful techniques because of their easy applicability. We have discussed earlier the use of infrared spectroscopic data to probe different potential models [4j. [Pg.498]

Physical properties affecting catalyst perfoniiance include tlie surface area, pore volume and pore size distribution (section B1.26). These properties regulate tlie tradeoff between tlie rate of tlie catalytic reaction on tlie internal surface and tlie rate of transport (e.g., by diffusion) of tlie reactant molecules into tlie pores and tlie product molecules out of tlie pores tlie higher tlie internal area of tlie catalytic material per unit volume, tlie higher the rate of tlie reaction... [Pg.2702]

The explicit definition of water molecules seems to be the best way to represent the bulk properties of the solvent correctly. If only a thin layer of explicitly defined solvent molecules is used (due to hmited computational resources), difficulties may rise to reproduce the bulk behavior of water, especially near the border with the vacuum. Even with the definition of a full solvent environment the results depend on the model used for this purpose. In the relative simple case of TIP3P and SPC, which are widely and successfully used, the atoms of the water molecule have fixed charges and fixed relative orientation. Even without internal motions and the charge polarization ability, TIP3P reproduces the bulk properties of water quite well. For a further discussion of other available solvent models, readers are referred to Chapter VII, Section 1.3.2 of the Handbook. Unfortunately, the more sophisticated the water models are (to reproduce the physical properties and thermodynamics of this outstanding solvent correctly), the more impractical they are for being used within molecular dynamics simulations. [Pg.366]

A particularly good selection of physical properties may be spectra, because they are known to depend strongly on the chemical structure. In fact, different types of spectra carry different kinds of structural information, NMR spectra characterize individual carbon atoms in their molecular environment. They therefore correspond quite closely to fragment-based descriptors, as underlined by the success of approaches to predict NMR spectra by fragment codes (see Section 10.2.3). [Pg.431]

The physical properties of a few tjrpical acid chlorides of aromatic acids are collected in Table IV, 18 7). Some acid anhydrides are also included in this Table (compare Section 111,94). [Pg.795]

Separations based upon differences in the physical properties of the components. When procedures (1) or (2) are unsatisfactory for the separation of a mixture of organic compounds, purely physical methods may be employed. Thus a mixture of volatile liquids may be fractionally distilled (compare Sections 11,15 and 11,17) the degree of separation may be determined by the range of boiling points and/or the refractive indices and densities of the different fractions that are collected. A mixture of non-volatile sohds may frequently be separated by making use of the differences in solubilities in inert solvents the separation is usually controlled by m.p. determinations. Sometimes one of the components of the mixture is volatile and can be separated by sublimation (see Section 11,45). [Pg.1092]

When the property being described is a physical property, such as the boiling point, this is referred to as a quantitative structure-property relationship (QSPR). When the property being described is a type of biological activity, such as drug activity, this is referred to as a quantitative structure-activity relationship (QSAR). Our discussion will first address QSPR. All the points covered in the QSPR section are also applicable to QSAR, which is discussed next. [Pg.243]

Section 7 4 Optical activity, or the degree to which a substance rotates the plane of polarized light is a physical property used to characterize chiral sub stances Enantiomers have equal and opposite optical rotations To be optically active a substance must be chiral and one enantiomer must be present m excess of the other A racemic mixture is optically inactive and contains equal quantities of enantiomers... [Pg.316]

Section 7 8 Both enantiomers of the same substance are identical m most of then-physical properties The most prominent differences are biological ones such as taste and odor m which the substance interacts with a chiral receptor site m a living system Enantiomers also have important conse quences m medicine m which the two enantiomeric forms of a drug can have much different effects on a patient... [Pg.316]

Section 7 15 Certain polymers such as polypropylene contain chirality centers and the relative configurations of these centers affect the physical properties of... [Pg.317]

Section 11 9 The physical properties of arenes resemble those of other hydrocarbons... [Pg.464]

In Section lA we indicated that analytical chemistry is more than a collection of qualitative and quantitative methods of analysis. Nevertheless, many problems on which analytical chemists work ultimately involve either a qualitative or quantitative measurement. Other problems may involve characterizing a sample s chemical or physical properties. Finally, many analytical chemists engage in fundamental studies of analytical methods. In this section we briefly discuss each of these four areas of analysis. [Pg.8]

The third approach employs modifications of the polymer s physical properties and/or resist processing to minimize contaminant absorption, and is described in the section, "Polymer Properties and Lithographic Performance". [Pg.128]

Butanediol. 1,4-Butanediol [110-63-4] tetramethylene glycol, 1,4-butylene glycol, was first prepared in 1890 by acid hydrolysis of N,]S3-dinitro-l,4-butanediamine (117). Other early preparations were by reduction of succinaldehyde (118) or succinic esters (119) and by saponification of the diacetate prepared from 1,4-dihalobutanes (120). Catalytic hydrogenation of butynediol, now the principal commercial route, was first described in 1910 (121). Other processes used for commercial manufacture are described in the section on Manufacture. Physical properties of butanediol are Hsted in Table 2. [Pg.108]

The physical properties of the acids, the most important anhydrides, and the full methyl esters are summarized ia Tables 2, 3, and4. Detailed Hsts of physical properties for phthaUc acid and its anhydride, terephthaUc acid and dimethyl terephthalate, isophthaUc acid, trimeUitic acid and its anhydride, and pyromeUitic acid and its dianhydride/ are provided under the sections describiag these compounds. [Pg.479]

For cubic crystals, which iaclude sUicon, properties described by other than a zero- or a second-rank tensor are anisotropic (17). Thus, ia principle, whether or not a particular property is anisotropic can be predicted. There are some properties, however, for which the tensor rank is not known. In addition, ia very thin crystal sections, the crystal may have two-dimensional characteristics and exhibit a different symmetry from the bulk, three-dimensional crystal (18). Table 4 is a listing of various isotropic and anisotropic sUicon properties. Table 5 gives values for the more common physical properties and for some of the thermodynamic properties. Figure 5 shows some thermal properties. [Pg.529]

Physical Properties. The C q trialkylacetic acids, referred to as neodecanoic acid [26896-20-8] or as Versatic 10 [52627-73-3] are Hquids at room temperature. Typical physical properties for commercially available material are given in Table 2. These materials are typically mixtures of isomers, hence no stmctures are given throughout this section. [Pg.105]

Molecular Connectivity Indexes and Graph Theory. Perhaps the chief obstacle to developing a general theory for quantification of physical properties is not so much in the understanding of the underlying physical laws, but rather the inabiUty to solve the requisite equations. The plethora of assumptions and simplifications in the statistical mechanics and group contribution sections of this article provide examples of this. Computational procedures are simplified when the number of parameters used to describe the saUent features of a problem is reduced. Because many properties of molecules correlate well with stmctures, parameters have been developed which grossly quantify molecular stmctural characteristics. These parameters, or coimectivity indexes, are usually based on the numbers and orientations of atoms and bonds in the molecule. [Pg.255]

George H. Thomson, AIChE Design Institute for Physical Property Data (Section 2, Physical and Chemical Data)... [Pg.17]

Data on the gas-liquid or vapor-liquid equilibrium for the system at hand. If absorption, stripping, and distillation operations are considered equilibrium-limited processes, which is the usual approach, these data are critical for determining the maximum possible separation. In some cases, the operations are are considerea rate-based (see Sec. 13) but require knowledge of eqmlibrium at the phase interface. Other data required include physical properties such as viscosity and density and thermodynamic properties such as enthalpy. Section 2 deals with sources of such data. [Pg.1350]

The success of compression agglomeration depends on the effective utilization and transmission ofthe applied external force and on the ability of the material to form and maintain interparticle bonds during pressure compaction (or consolidation) and decompression. Both these aspects are controlled in turn by the geometiy of the confined space, the nature of the apphed loads and the physical properties of the particulate material and of the confining walls. (See the section on Powder Mechanics and Powder Compaction.)... [Pg.1899]

The results of the calculations in this book lead to a conservative ( middle of the road ) design. The results are calculated estimates that can be adjusted one way or another to enhance a performance or a physical property of the power supply. These compromises are discussed in the appropriate sections of the text. [Pg.268]


See other pages where Section 5. Physical Properties is mentioned: [Pg.889]    [Pg.376]    [Pg.384]    [Pg.89]    [Pg.2543]    [Pg.2582]    [Pg.2702]    [Pg.124]    [Pg.238]    [Pg.1063]    [Pg.1081]    [Pg.7]    [Pg.150]    [Pg.610]    [Pg.16]    [Pg.277]    [Pg.423]    [Pg.448]    [Pg.21]    [Pg.188]    [Pg.419]    [Pg.8]    [Pg.92]    [Pg.458]    [Pg.481]    [Pg.19]    [Pg.221]   


SEARCH



Macroscopic Cross Sections and Physical Properties

Physical Sectioning

Section properties

© 2024 chempedia.info