Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Secondary positive electrodes

There are many methods of fabricating the electrodes for these cell systems. The eadiest commercially successhil developments used nickel hydroxide [12054-48-7] Ni(OH)2, positive electrodes. These electrodes are commonly called nickel electrodes, disregarding the actual chemical composition. Alkaline cells using the copper oxide—2inc couple preceeded nickel batteries but the CuO system never functioned well as a secondary battery. It was, however, commercially available for many years as a primary battery (see BatterieS-PRIMARY cells). [Pg.543]

Since under these conditions, discharge of the cell as a rule results in the production of one OH ion for each electron at the positive electrode [Eq. (19.4)], the secondary process overall occurs without the consumption of alkali, and a solution volume of 1 to 2 mL/Ah is practically sufficient for operation of the cell. [Pg.352]

The dissolution of sulfur in ammonia has been known for more than 100 years [17]. The identification of the chemical species in these solutions was a matter of confusion until the identification of S4N and 83 , by Chivers and Lau [18] and Bernard et al. [19], using Raman spectroscopy. When considering the species formed in the dissolution process, it is quite remarkable that this dissolution is reversible sulfur is recovered after evaporation of ammonia. These solutions are strongly colored (blue), mainly due to the electronic absorption band of S4N at 580 nm. It must be mentioned that this dissolution is moderately fast at room temperature (but much slower than the dissolution of alkali metals) and that the rate is much slower when temperature decreases. It should also be mentioned that concentrated solutions of sulfur in liquid ammonia can be used as the solution at the positive electrode of a secondary battery. The solution at the negative electrode can be a solution of alkali metal in liquid ammonia [20], the electrodes being... [Pg.256]

In the lithium-ion secondary battery, which was put on the market in 1990, the difficulty of the Li+/Li electrode was avoided by use of a carbon negative electrode Cy), which works as a host for Li+ ions by intercalation. The active material for the positive electrode is typically LiCo02, which is layer-structured and also works as a host for Li+ ions. The electrolyte solutions are nearly the same as those used in the primary lithium batteries. A schematic diagram of a lithium-ion battery is shown in Fig. 12.2. The cell reaction is as follows ... [Pg.315]

Negative and positive are the almost universal terms used to identify the negative electrode and positive electrode, respectively, of a secondary cell (see p. 27). [Pg.144]

Initial development of ambient secondary lithium batteries was based on the primary lithium systems described in Chapter 4, consisting of a lithium metal negative, a non-aqueous lithium ion conducting electrolyte and a positive electrode material which could undergo a reversible electrochemical reaction with lithium ions ... [Pg.198]

One of the problems encountered with the Werth cell was an increase in resistance with cycling. This may have been caused in part by the /3-alumina reacting with the acidic sodium chloroaluminate melt. Coetzer had the idea of using transition metal chlorides as a positive electrode and chose a basic sodium chloroaluminate melt as the liquid electrolyte. This is compatible with /3-alumina, and a new class of secondary cells based upon the reaction between sodium metal and transition metal chloride has resulted from this work. Collectively, the term Zebra battery is used to describe this new class of cell. [Pg.266]

Lead-acid accumulator — (- Sinsteden 1854, - Plante 1859-60) A secondary - battery containing a lead dioxide positive electrode, a metallic lead negative electrode and a sulfuric acid aqueous electrolyte solution. The electrode reactions are... [Pg.2]

Edison cell — A nickel-iron (Ni-Fe) secondary (rechargeable) cell independently developed by Edison in USA and W. Jiinger in Sweden in 1900. The cell (-> battery) is based on the use of nickel oxyhydroxide (NiOOH) at the positive electrode and metallic iron for the negative electrode, and a potassium hydroxide (KOH) solution containing lithium hydroxide (LiOH) is the electrolyte. The Ni-Fe cell is represented as ( Fe/KOH/NiOOH. The charge-discharge reactions for the Edison (Ni-Fe) cell are as follows ... [Pg.180]

Ni-Cd cells — The nickel-cadmium cell is a secondary - battery that has a nominal cell potential of 1.20-1.25 V. The negative electrode comprises nickel hydroxide-nickel oxyhydroxide, the positive electrode is cadmium, and the electrolyte solution is based on aqueous potassium hydroxide (KOH, 32% in water). At the anode, the discharge reaction is the oxidation of cadmium metal to cadmium hydroxide with the release of two electrons [i] ... [Pg.447]

The picture is somewhat more complicated at the positive electrode. Again, the float voltage must be sufficiently positive to drive the PbS04/Pb02 reaction to completion and maintain it, but this must be balanced against the secondary... [Pg.265]

If a gamma ray enters the depletion region of the detector, it may interact and form an ion-electron pair, which may in turn cause secondary ionization on their way to the lithium side of the detector (the positive electrode). These electrons charge up the detector (the two electrodes of the detector separated by its dielectric form a capacitor) and produce a voltage pulse across the electrodes. The magnitude of this pulse is... [Pg.578]

The carbazole polymer poly(iV-vinylcarbazole) functions as a positive electrode material for a secondary lithium battery <85CC553>, and as a memory photoreceptor <91M1 204-0l>. The related poly[3-(3-bromocarbazol-9-yl)propyl]methylsiloxane (18) forms novel electrochromic films <89CC196>. Carbazole anions have b n used to initiate the polymerization of acrylates and methacrylates <95CC275>. The novel polymeric pyrrolocarbazole (19) displays physical properties similar to those of polyanilines. [Pg.211]

In Zn-air cells the negative electrode is metallic zinc while the positive electrode is a porous air electrode, usually carbon-based. The product ZnO is dissolved in the circulating alkali electrolyte and washed away. During charging the ZnO-containing solution is washed back again which justifies the competition with a secondary cell. [Pg.59]


See other pages where Secondary positive electrodes is mentioned: [Pg.56]    [Pg.505]    [Pg.583]    [Pg.282]    [Pg.351]    [Pg.445]    [Pg.16]    [Pg.314]    [Pg.27]    [Pg.171]    [Pg.337]    [Pg.59]    [Pg.462]    [Pg.2]    [Pg.41]    [Pg.493]    [Pg.63]    [Pg.398]    [Pg.336]    [Pg.380]    [Pg.381]    [Pg.386]    [Pg.388]    [Pg.147]    [Pg.505]    [Pg.583]    [Pg.242]    [Pg.242]    [Pg.62]    [Pg.186]    [Pg.204]    [Pg.459]   


SEARCH



Electrode positive

© 2024 chempedia.info