Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Secondary electrode reactions

Using mathematical modeling to rationalize and predict battery behavior and system performance has been widely used. Driven by commercial interests in the 1980s, the Zn/Bt2 battery was extensively simulated, and various types of models have been used to investigate the transportation of species, secondary electrode reactions, and chemical reactions in bulk electrolyte. Lee et al. [76] developed thin diffusion-layer models to assess the effects of separator and terminal resistance on current distribution and the performance of flow reactors. In this model, in... [Pg.91]

When a battery produces current, the sites of current production are not uniformly distributed on the electrodes (45). The nonuniform current distribution lowers the expected performance from a battery system, and causes excessive heat evolution and low utilization of active materials. Two types of current distribution, primary and secondary, can be distinguished. The primary distribution is related to the current production based on the geometric surface area of the battery constmction. Secondary current distribution is related to current production sites inside the porous electrode itself. Most practical battery constmctions have nonuniform current distribution across the surface of the electrodes. This primary current distribution is governed by geometric factors such as height (or length) of the electrodes, the distance between the electrodes, the resistance of the anode and cathode stmctures by the resistance of the electrolyte and by the polarization resistance or hinderance of the electrode reaction processes. [Pg.514]

The fundamental requirement of a coulometric analysis is that the electrode reaction used for the determination proceeds with 100 per cent efficiency so that the quantity of substance reacted can be expressed by means of Faraday s Law from the measured quantity of electricity (coulombs) passed. The substance being determined may directly undergo reaction at one of the electrodes (primary coulometric analysis), or it may react in solution with another substance generated by an electrode reaction (secondary coulometric analysis). [Pg.529]

The design of a AA-size alkaline manganese dioxide cell is shown in Fig. 1 (Sec. 3.1). Primary and secondary alkaline batteries are constructed in the same way and can be manufactured on essentially the same machinery. The separator material, electrode formulation, and the Mn02 Zn balance are different. Rechargeable cells are zinc-limited to prevent a discharge beyond the first electron-equivalent of the MnOz reduction. The electrolyte is 7-9 mol L KOH. The electrode reactions are ... [Pg.73]

The organization of the Handbook of Battery Materials is simple, dividing between aqueous electrolyte batteries and alkali metal batteries and further in anodes, cathodes, electrolytes and separators. There are also three more general chapters about thermodynamics and mechanistics of electrode reactions, practical batteries and the global competition of primary and secondary batteries. [Pg.624]

Monofunctional and Polyfunctional Electrodes At monofunctional electrodes, one sole electrode reaction occurs under the conditions specified when current flows. At polyfunctional electrodes, two or more reactions occur simultaneously an example is the zinc electrode in acidic zinc sulfate solution. When the current is cathodic, metallic zinc is deposited at the electrode [reaction (1.21)] and at the same time, hydrogen is evolved [reaction (1.27)]. The relative strengths of the partial currents corresponding to these two reactions depend on the conditions (e.g., the temperature, pH, solution purity). Conditions may change so that a monofunctional electrode becomes polyfunctional, and vice versa. In the case of polyfunctional electrodes secondary (or side) reactions are distinguished from the principal (for the given purpose) reaction (e.g., zinc deposition). In the electrolytic production of substances and in other practical applications, one usually tries to suppress all side reactions so that the principal (desired) reaction will occur with the highest possible efficiency. [Pg.17]

Anolyte purification process involves use of secondary cells in which aqueous sodium chloride is used. The electrode reactions in the cells are ... [Pg.724]

In electroanalysis, coulometry is an important method in which the analyte is specifically and completely converted via a direct or indirect electrolysis, and the amount of electricity (in coulombs) consumed thereby is measured. According to this definition there are two alternatives (1) the analyte participates in the electrode reaction (primary or direct electrolysis), or (2) the analyte reacts with the reagent, generated (secondary or indirect electrolysis) either internally or externally. [Pg.232]

As a secondary reference electrode, the Ag/AgCl electrode is the most common due to its simplicity, stability, and capability of miniaturization. A conventional Ag/AgCl reference electrode is a silver wire that is coated with a thin layer of silver chloride either by electroplating or by dipping the wire in molten silver chloride. The electrode reaction is as follows... [Pg.302]

In Chapter 21, Hawley has formulated a series of questions about the mechanism of an electrode reaction. Complete diagnosis of the mechanism includes knowledge of the electrode reaction products and the sequential steps (E and/ or C) by which they are formed. If a chemical reaction follows rapidly upon an electron transfer, the new (secondary) product may be produced close to the electrode, and may be subject to further electrochemistry. If the secondary products are formed slowly, after the primary electrolysis product has diffused away from the electrode, their formation will ordinarily not influence the electrode mechanism, except in bulk electrolysis. We limit our treatment to reactions occurring on the CV time scale, approximately 20 s to 10 ms for routine technology. Ultramicroelectrode technology (Chap. 12) extends the short-time limit to below 1 ps. [Pg.683]

The electrochemical behavior of malonyl-a-aminopyridines 661 was investigated by Gullu et al. in acetonitrile or a mixture of trifluoroacetic acid and dichloromethane containing tetrabutylammonium tetrafluoro-borate or triethylammonium trifluoroacetate in a water-jacketed, two-compartment glass cell equipped with a platinum disk anode at 1.50 V (Ag/ Ag+) and a carbon-rod secondary electrode (91T675). Controlled potential anodic oxidation of 661 afforded labile coupled carboxylic acids 662 (R2 = COOH), which easily decarboxylated to compounds 662 (R2 = H) under the work-up conditions. Sometimes, the carboxylic acid 662 (R2 = COOH) could be isolated or when the reaction mixture was treated with methanol, methyl ester 662 (R = H, R1 = Bu, R2 = COOMe) was obtained in 40% yield. [Pg.238]

Should any iron(II) reach the anode, it also would be oxidized and thus not require the chemical reaction of Eq. (4.13) to bring about oxidation, but this would not in any way cause an error in the titration. This method is equivalent to the constant-rate addition of titrants from a burette. However, in place of a burette the titrant is electrochemically generated in the solution at a constant rate that is directly proportional to the constant current. For accurate results to be obtained the electrode reaction must occur with 100% current efficiency (i.e., without any side reactions that involve solvent or other materials that would not be effective in the secondary reaction). In the method of coulometric titrations the material that chemically reacts with the sample system is referred to as an electrochemical intermediate [the cerium(III)/cerium(IV) couple is the electrochemical intermediate for the titration of iron(II)]. Because one faraday of electrolysis current is equivalent to one gram-equivalent (g-equiv) of titrant, the coulometric titration method is extremely sensitive relative to conventional titration procedures. This becomes obvious when it is recognized that there are 96,485 coulombs (C) per faraday. Thus, 1 mA of current flowing for 1 second represents approximately 10-8 g-equiv of titrant. [Pg.153]

All the above studies indicated clearly that reduction of solvent, salt, and additives (e.g., H20) by Li contribute together to the buildup of the surface films on lithium in solutions. It should be emphasized that XRD, XPS, and AES studies of Li electrodes, as well as the indirect identification of surface species from studies of reactions of lithiated graphite or Li/Hg amalgam with electrolyte solutions, could not provide specific enough information on the chemical composition of the surface films. Moreover, application of XPS for Li electrodes may induce secondary surface reactions. Visible changes appear on Li surfaces during XPS measurements. More specific information on the composition of the surface layers formed on Li could be obtained by surface-sensitive FTIR spectroscopy that was introduced into this field in the middle of 1985 by Yeager et al. [84,85,178], and which is a nondestructive technique. [Pg.316]

Rather slow electrode processes (especially in the case of gas electrodes) which have low exchange current densities. At steady state, the overall rates are generally determined by the rates of charge transfer and/or of secondary chemical reactions at the electrode-melt interface. [Pg.501]

Lead-acid accumulator — (- Sinsteden 1854, - Plante 1859-60) A secondary - battery containing a lead dioxide positive electrode, a metallic lead negative electrode and a sulfuric acid aqueous electrolyte solution. The electrode reactions are... [Pg.2]

Sodium-sulfur battery— Secondary -+ battery employing molten sodium and molten sulfur/sodium sulfide) as active masses and a sodium-conducting aluminum oxide as solid electrolyte operating at about T = 350 °C. The electrode reactions are... [Pg.615]

There are, however, many different types of electrochemical oxidations of phenol derivatives possible, the results of which largely depend on the methods used as well as the structure of the different phenols. Secondary chemical reactions of factors including the primary or secondary oxidation products can also occur. The various electrochemical methods used are dependent on solvents, pH values, electrode materials or absorption effects at the electrodes. These all influence the measured potentials. Moreover, the liquid/liquid potentials and the various indicator electrodes can give results, which cannot be safely compared with the general E scala of redox potentials in aqueous solutions. In this review we cannot go into the many details obtained by these methods. For some examples see Ref. 203 . [Pg.152]

Chemical reversibility refers not to the speed of the electron-transfer step, but to the rate at which the primary electrode product may react, isomerize, or otherwise decompose to form a secondary product. These homogeneous reactions can occur either within the electrode-reaction layer or in the bulk of solution, e.g., in ... [Pg.147]

A knowledge of the electron-electrode equilibrium potential is necessary to form a judgement about the primary or secondary nature of the generation process (see Sect. 7) and the place of this process among other electrode reactions. [Pg.177]

In electrochemical proton transfer, such as may occur as a primary step in the hydrogen evolution reaction (h.e.r.) or as a secondary, followup step in organic electrode reactions or O2 reduction, the possibility exists that nonclassical transfer of the H particle may occur by quantum-mechanical tunneling. In homogeneous proton transfer reactions, the consequences of this possibility were investigated quantitatively by Bernal and Fowler and Bell, while Bawn and Ogden examined the H/D kinetic isotope effect that would arise, albeit on the basis of a primitive model, in electrochemical proton discharge and transfer in the h.e.r. [Pg.143]

Secondary current distribution [85, 86], Here, mass transfer effects are not controlling, bnt reaction kinetics are considered because of a non-negligible electrode polarization (i.e., electrode reactions that require an appreciable surface overpotential to sustain a high reaction rate). Once again, Laplace s Equation (Equation [26.120]) is solved for the potential distribution, but the boundary condition for O on the electrode surface (y = 0) is given by... [Pg.1790]


See other pages where Secondary electrode reactions is mentioned: [Pg.348]    [Pg.348]    [Pg.118]    [Pg.659]    [Pg.827]    [Pg.483]    [Pg.70]    [Pg.80]    [Pg.28]    [Pg.289]    [Pg.125]    [Pg.343]    [Pg.129]    [Pg.2537]    [Pg.273]    [Pg.23]    [Pg.29]    [Pg.31]    [Pg.203]    [Pg.16]    [Pg.351]    [Pg.1816]    [Pg.1819]   
See also in sourсe #XX -- [ Pg.2 , Pg.363 ]




SEARCH



Electrode reactions

Secondary reactions

© 2024 chempedia.info