Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Secondary amines synthesis

H.J. Cristau, C. Garcia, J. Kadoura u. E. Torreilles, Phosphorus, Sulfur, Silicon Relat. Elem. 49/50,151-154 (1990). Phosphonium Diaza-diylids and Aza-yldiid as New and Efficient Reagents for Primary and Secondary Amine Synthesis". [Pg.1334]

Although Forster initially reported this reaction, it was Decker and Becker who investigated it in more depth and made this reaction an applicable route for the preparation of secondary amines. Therefore, this reaction is known as the Decker-Becker method or Forster reaction, but it is named the Decker-Becker secondary amine synthesis in this book. It is the synthesis of secondary amine by the condensation of primary amines with aldehydes to form an imine intermediate, which then reacts with alkyl halides via alkylation to Anally afford secondary amines after hydrolysis. This reacAon gives good results when methyl halides are used but works poorly and unstably when larger alkyl halides are applied. ... [Pg.862]

Other references related to the Decker-Becker secondary amine synthesis are cited in the literature. ... [Pg.864]

Secondary Amine Synthesis from Primary Amines. ... [Pg.412]

Nitroarenes and nitriles could also be employed as amine precursors. In 2010, Li and co-workers reported a ruthenium complex-catalyzed synthesis of tertiary amines by A -alkylation of nitroarenes with alcohols (Eq. 14) [87], In this method, large excess amounts of the alcohols (mostly 7.5 equiv.) are necessary to reduce the nitroarenes to anilines prior to A -alkylation. In 2011, Shi and co-workers also developed an amination reaction for secondary amine synthesis from nitro or nitrile compounds (Eq. 15) [88]. In the same year, Deng and co-workers reported a ruthenium-catalyzed method for tertiary-amine synthesis from nitriles and primary alcohols [89]. In 2013, Beller and co-workers reported another A -alkylation reaction of nitrile compounds with secondary alcohols [90]. [Pg.315]

Mono-substituted and unsymmetrical di-substituted ureas may be prepared by a modification of Wohler s urea synthesis, salts of primary or secondary amines being used instead of the ammonium salt for interaction with potassium cyanate. Thus when an aqueous solution containing both aniline hydrochloride and potassium cyanate is heated, aniline cyanate is first formed, and then C,HjNH,HCl -h KCNO = C,H6NHj,HCNO -h KCl C,HsNH HCNO = C.H NHCONH, by the usual molecular rearrangement is converted into monophenyburea. [Pg.124]

Primary and secondary amines are susceptible to oxidation and replacement reactions involving the N—H bonds. Within the development of peptide synthesis numerous protective groups for N—H bonds have been found (M, Bodanszky, 1976 L.A. Carpino, 1973), and we shall discuss five of the more general methods used involving the reversible formation of... [Pg.161]

Primary and secondary amines also react with epoxides (or in situ produced episulfides )r aziridines)to /J-hydroxyamines (or /J-mercaptoamines or 1,2-diamines). The Michael type iddition of amines to activated C—C double bonds is also a useful synthetic reaction. Rnally unines react readily with. carbonyl compounds to form imines and enamines and with carbo-tylic acid chlorides or esters to give amides which can be reduced to amines with LiAlH (p. Ilf.). All these reactions are often applied in synthesis to produce polycyclic alkaloids with itrogen bridgeheads (J.W. Huffman, 1967) G. Stork, 1963 S.S. Klioze, 1975). [Pg.291]

A special problem arises in the preparation of secondary amines. These compounds are highly nucleophilic, and alkylation of an amine with alkyl halides cannot be expected to stop at any specifle stage. Secondary amides, however, can be monoalkylated and lydrolyzed or be reduced to secondary amines (p. 11 If.). In the elegant synthesis of phenyl- phrine an intermediate -hydroxy isocyanate (from a hydrazide and nitrous acid) cyclizes to pve an oxazolidinone which is monomethylated. Treatment with strong acid cleaves the cyclic irethan. [Pg.301]

Carbonylation of halides in the presence of primary and secondary amines at I atm affords amides[351j. The intramolecular carbonylation of an aryl bromide which has amino group affords a lactam and has been used for the synthesis of the isoquinoline alkaloid 498(352], The naturally occurring seven-membered lactam 499 (tomaymycin, neothramycin) is prepared by this method(353]. The a-methylene-d-lactam 500 is formed by the intramolecular carbonylation of 2-bromo-3-alkylamino-l-propene(354]. [Pg.196]

Hydroxylysine (328) was synthesized by chemoselective reaction of (Z)-4-acet-oxy-2-butenyl methyl carbonate (325) with two different nucleophiles first with At,(9-Boc-protected hydroxylamine (326) under neutral conditions and then with methyl (diphenylmethyleneamino)acetate (327) in the presence of BSA[202]. The primary allylic amine 331 is prepared by the highly selective monoallylation of 4,4 -dimethoxybenzhydrylamine (329). Deprotection of the allylated secondary amine 330 with 80% formic acid affords the primary ally-lamine 331. The reaction was applied to the total synthesis of gabaculine 332(203]. [Pg.334]

Synthesis. The classic laboratory synthesis of /V-nitrosamines is the reaction of a secondary amine with acidic nitrite [14797-65-0] at ca pH 3. The primary nitrosating intermediate is N2O2 arising from nitrous acid [7782-77-6] (48). [Pg.107]

Pyrrohdine [123-75-1] (tetrahydropyrrole) (19) is a water-soluble strong base with the usual properties of a secondary amine. An important synthesis of pyrrohdines is the reaction of reduced furans with excess amine or ammonia over an alumina catalyst in the vapor phase at 400°C. However, if labde substituents are present on the tetrahydrofurans, pyrroles may form (30). [Pg.356]

Hydroxyl Group. The OH group of cyanohydrins is subject to displacement with other electronegative groups. Cyanohydrins react with ammonia to yield amino nitriles. This is a step in the Strecker synthesis of amino acids. A one-step synthesis of a-amino acids involves treatment of cyanohydrins with ammonia and ammonium carbonate under pressure. Thus acetone cyanohydrin, when heated at 160°C with ammonia and ammonium carbonate for 6 h, gives a-aminoisobutyric acid [62-57-7] in 86% yield (7). Primary and secondary amines can also be used to displace the hydroxyl group to obtain A/-substituted and Ai,A/-disubstituted a-amino nitriles. The Strecker synthesis can also be appHed to aromatic ketones. Similarly, hydrazine reacts with two molecules of cyanohydrin to give the disubstituted hydrazine. [Pg.411]

This reaction has been used as the key step in an original synthesis of formycln (80CJC2624). By a similar mechanism, via a 3H-lndazole, the 2,5-dlnitro derivative reacts with secondary amines to afford 3-amino-5-nltrolndazoles (80MI40404, 81JOC2706, 82PNA4487). [Pg.270]

The addition of secondary amines to acetylenes is most applicable to the synthesis of conjugated acyclic enamines (50,171,172). Particularly the addition to acetylenic esters and sulfones has been investigated (173-177) and it appears that an initial trans addition is followed by isomerization to more stable products where the amine and functional group are in a trans orientation (178). Enamines have also been obtained by addition of secondary amines to allenes (179). [Pg.332]

The scheme used above for attaching the side chain is not applicable to secondary amines since such compounds would not form organometallics. In an ingenious synthesis, the ketone,... [Pg.151]

The synthesis of a benzamide with a somewhat more complex side chain starts by condensation of acid 144 with racemic cis-aminopiperidine 152. Removal of the benzyl group of 153 by hydrogenolysis gives the secondary amine 154. Alkylation on nitrogen with the halide 155 gives finally the dopamine antagonist, cisapride (156) [38,39]. [Pg.42]

Ammonia and other amines are good nucleophiles in SN2 reactions. As a result, the simplest method of alkylamine synthesis is by Sn2 alkylation of ammonia or an alkylamine with an alky) halide. If ammonia is used, a primary amine results if a primary amine is used, a secondary amine results and so on. Even tertiary amines react rapidly with alkyl halides to yield quaternary ammonium salts, R4N+ X-... [Pg.928]

Photosensitive functions are in many cases also heat sensitive, so the preparation of photosensitive polyimides needs smooth conditions for the condensations and imidization reactions. Some chemical reactants, which can be used for polyamide preparation, have been patented for the synthesis of polyimides and polyimide precursors. For example, chemical imidization takes place at room temperature by using phosphonic derivative of a thiabenzothiazoline.102 A mixture of N -hydroxybenzotriazole and dicyclohexylcarbodiimide allows the room temperature condensation of diacid di(photosensitive) ester with a diamine.103 Dimethyl-2-chloro-imidazolinium chloride (Fig. 5.25) has been patented for the cyclization of a maleamic acid in toluene at 90°C.104 The chemistry of imidazolide has been recently investigated for the synthesis of polyimide precursor.105 As shown in Fig. 5.26, a secondary amine reacts with a dianhydride giving meta- and para-diamide diacid. The carbonyldiimidazole... [Pg.292]

The most widely employed methods for the synthesis of nitrones are the condensation of carbonyl compounds with A-hydroxylamines5 and the oxidation of A+V-di substituted hydroxylamines.5 9 Practical and reliable methods for the oxidation of more easily available secondary amines have become available only recently.10 11 12 13. These include reactions with stoichiometric oxidants not readily available, such as dimethyldioxirane10 or A-phenylsulfonyl-C-phenyloxaziridine,11 and oxidations with hydrogen peroxide catalyzed by Na2W044 12 or Se02.13 All these methods suffer from limitations in scope and substrate tolerance. For example, oxidations with dimethyldioxirane seem to be limited to arylmethanamines and the above mentioned catalytic oxidations have been reported (and we have experienced as well) to give... [Pg.108]

Synthesis and characterization of ABA type copolymers containing polydimethyl-siloxane or poly(trifluoropropyl,methyl)siloxane middle blocks and aromatic ester based liquid crystalline end blocks were reported 252,253). These materials were synthesized in solution by the reaction of primary or secondary amine-terminated, di-... [Pg.45]


See other pages where Secondary amines synthesis is mentioned: [Pg.424]    [Pg.426]    [Pg.864]    [Pg.244]    [Pg.424]    [Pg.426]    [Pg.864]    [Pg.244]    [Pg.42]    [Pg.330]    [Pg.393]    [Pg.315]    [Pg.3]    [Pg.711]    [Pg.888]    [Pg.891]    [Pg.892]    [Pg.160]    [Pg.114]    [Pg.136]    [Pg.169]    [Pg.205]    [Pg.291]    [Pg.60]    [Pg.61]    [Pg.111]    [Pg.98]    [Pg.290]    [Pg.355]    [Pg.689]    [Pg.23]    [Pg.92]   
See also in sourсe #XX -- [ Pg.2 , Pg.6 , Pg.216 , Pg.419 , Pg.420 , Pg.421 , Pg.422 , Pg.423 , Pg.424 , Pg.425 , Pg.426 , Pg.427 , Pg.428 , Pg.429 , Pg.430 , Pg.431 ]

See also in sourсe #XX -- [ Pg.1109 ]




SEARCH



Amination secondary

Amines secondary

Amines synthesis

Secondary synthesis

© 2024 chempedia.info