Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Scintillation detectors scintillators

Scintillation counting Scintillation crystals Scintillation detector Scintillation detectors... [Pg.873]

The X-ray instrumentation requires a commercial small angle X-ray camera, a standard fine structure X-ray generator and a sample manipulator if scanning is requested. The essential signal is the relative difference between the refraction level Ir and the absorption level Ia. Both levels are measured simultaneously by two scintillation detectors. At fixed angles of deflection this signal depends solely on the inner surface density factor C and thickness d of the sample [2] ... [Pg.558]

Various computed tomography CT- scanners for industrial applications have been designed and constructed) They use as radiation sources X-ray tubes or gamma emitting radioisotopes and as detectors NaI(Tl)-scintillators for gamma rays and image intensifiers for X-rays. [Pg.593]

Although direct coupling of a camera to a scintillator can give acceptable results one of its major drawback is the degradation of the quantum noise mainly related to the low transmission of the optics. The following schematics summarizes the particles flux (photons and electrons) across the different stages of the detector ... [Pg.595]

For the parallel recording of EEL spectra in STEM, linear arrays of semiconductor detectors are used. Such detectors convert the incident electrons mto photons, using additional fluorescent coatings or scintillators in the very same way as the TEM detectors described above. [Pg.1633]

A scintillator, sometimes known as the Daly detector, is an ion collector that is especially useful for studies on metastable ions. The principle of operation is illustrated in Figure 28.4. As with the first dynode of an electron multiplier, the arrival of a fast ion causes electrons to be emitted, and they are accelerated toward a second dynode. In this case, the dynode consists of a substance (a scintillator) that emits photons (light). The emitted light is detected by a commercial photon... [Pg.203]

An incident ion beam causes secondary electrons to be emitted which are accelerated onto a scintillator (compare this with the operation of a TV screen). The photons that are emitted (like the light from a TV screen) are detected not by eye but with a highly sensitive photon detector (photon multiplier), which converts the photon energy into an electric current. [Pg.203]

By placing a suitable detector at the focus (a point detector), the arrival of ions can be recorded. Point detectors are usually a Faraday cup (a relatively insensitive device) or, more likely, an electron multiplier (a very sensitive device) or, less likely, a scintillator (another sensitive device). [Pg.408]

Arrival of ions, which have a positive or negative charge, causes an electric current to flow either directly (Faraday cup) or indirectly (electron multiplier and scintillator detectors). [Pg.408]

Figure 8.28 shows how the X-rays fall on the solid or liquid sample which then emits X-ray fluorescence in the region 0.2-20 A. The fluorescence is dispersed by a flat crystal, often of lithium fluoride, which acts as a diffraction grating (rather like the quartz crystal in the X-ray monochromator in Figure 8.3). The fluorescence may be detected by a scintillation counter, a semiconductor detector or a gas flow proportional detector in which the X-rays ionize a gas such as argon and the resulting ions are counted. Figure 8.28 shows how the X-rays fall on the solid or liquid sample which then emits X-ray fluorescence in the region 0.2-20 A. The fluorescence is dispersed by a flat crystal, often of lithium fluoride, which acts as a diffraction grating (rather like the quartz crystal in the X-ray monochromator in Figure 8.3). The fluorescence may be detected by a scintillation counter, a semiconductor detector or a gas flow proportional detector in which the X-rays ionize a gas such as argon and the resulting ions are counted.
Detectors. Two general types of detectors are used in x-ray medical imaging scintillation and gas ionisation. Scintillation detectors are used for both conventional projection and computerized tomographic imaging. Ionization detectors have been used only in CT appHcations. All detectors used in detection of x-ray radiation must be linear and have a maximum efficiency at the wavelength of the x-ray photon to be detected. [Pg.50]

Scintillation detectors are substances which fluoresce when stmck by x-radiation. Scintillation can, therefore, serve to convert x-ray photons into visible or ultraviolet light. Scintillation materials include thaUium-activatedcrystals of sodium iodide, NaI(Tl), potassium iodide, KI(T1), or cesium iodide, CsI(Tl) crystals of stilbene (a, P-diphenylethylene) [588-59-0] and anthracene [120-12-7] bismuth germanium oxide [12233-56-6] ... [Pg.50]

Scintillators are also used in the detectors of CT scanners. Here an electronic detector, the photomultiplier tube, is used to produce an electrical signal from the visible and ultraviolet light photons. These imaging systems typically need fast scintillators with a high efficiency. [Pg.50]

A large number of radiometric techniques have been developed for Pu analysis on tracer, biochemical, and environmental samples (119,120). In general the a-particles of most Pu isotopes are detected by gas-proportional, surface-barrier, or scintillation detectors. When the level of Pu is lower than 10 g/g sample, radiometric techniques must be enhanced by preliminary extraction of the Pu to concentrate the Pu and separate it from other radioisotopes (121,122). Alternatively, fission—fragment track detection can detect Pu at a level of 10 g/g sample or better (123). Chemical concentration of Pu from urine, neutron irradiation in a research reactor, followed by fission track detection, can achieve a sensitivity for Pu of better than 1 mBq/L (4 X 10 g/g sample) (124). [Pg.200]

A gamma-ray spectmm is produced nondispersively by pulse-height (multichannel) analysis using scintillation or semiconductor detectors. Resolving power, typically - 100 at 100 keV and - 700 at 2 MeV, is quite modest compared with that achievable in other spectral regions, but is sufficient to identify nucHdes unambiguously. [Pg.320]


See other pages where Scintillation detectors scintillators is mentioned: [Pg.535]    [Pg.208]    [Pg.211]    [Pg.580]    [Pg.585]    [Pg.595]    [Pg.1436]    [Pg.1436]    [Pg.1632]    [Pg.1632]    [Pg.643]    [Pg.644]    [Pg.204]    [Pg.59]    [Pg.88]    [Pg.89]    [Pg.113]    [Pg.148]    [Pg.155]    [Pg.186]    [Pg.804]    [Pg.906]    [Pg.932]    [Pg.980]    [Pg.1088]    [Pg.292]    [Pg.57]    [Pg.57]    [Pg.57]    [Pg.481]    [Pg.482]    [Pg.482]    [Pg.320]    [Pg.376]    [Pg.379]   
See also in sourсe #XX -- [ Pg.122 , Pg.123 , Pg.124 ]




SEARCH



Detectors scintillation detector

Scintillation detector

Scintillator

© 2024 chempedia.info