Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Manganese importance

Manufactured by the liquid-phase oxidation of ethanal at 60 C by oxygen or air under pressure in the presence of manganese(ii) ethanoate, the latter preventing the formation of perelhanoic acid. Another important route is the liquid-phase oxidation of butane by air at 50 atm. and 150-250 C in the presence of a metal ethanoate. Some ethanoic acid is produced by the catalytic oxidation of ethanol. Fermentation processes are used only for the production of vinegar. [Pg.164]

Manganese is the third most abundant transition metal, and is widely distributed in the earth s crust. The most important ore is pyrolusite, manganese(IV) oxide. Reduction of this ore by heating with aluminium gives an explosive reaction, and the oxide Mn304 must be used to obtain the metal. The latter is purified by distillation in vacuo just above its melting point (1517 K) the pure metal can also he obtained by electrolysis of aqueous manganese(II) sulphate. [Pg.384]

Manganese is widely distributed throughout the animal kingdom. It is an important trace element and may be essential for utilization of vitamin Bl. [Pg.60]

Titanium is important as an alloying agent with aluminum, molybdenum, manganese, iron, and other metals. Alloys of titanium are principally used for aircraft and missiles where lightweight strength and ability to withstand extremes of temperature are important. [Pg.76]

Adiponitrile undergoes the typical nitrile reactions, eg, hydrolysis to adipamide and adipic acid and alcoholysis to substituted amides and esters. The most important industrial reaction is the catalytic hydrogenation to hexamethylenediarnine. A variety of catalysts are used for this reduction including cobalt—nickel (46), cobalt manganese (47), cobalt boride (48), copper cobalt (49), and iron oxide (50), and Raney nickel (51). An extensive review on the hydrogenation of nitriles has been recendy pubUshed (10). [Pg.220]

Butane-Naphtha Catalytic Liquid-Phase Oxidation. Direct Hquid-phase oxidation ofbutane and/or naphtha [8030-30-6] was once the most favored worldwide route to acetic acid because of the low cost of these hydrocarbons. Butane [106-97-8] in the presence of metallic ions, eg, cobalt, chromium, or manganese, undergoes simple air oxidation in acetic acid solvent (48). The peroxidic intermediates are decomposed by high temperature, by mechanical agitation, and by action of the metallic catalysts, to form acetic acid and a comparatively small suite of other compounds (49). Ethyl acetate and butanone are produced, and the process can be altered to provide larger quantities of these valuable materials. Ethanol is thought to be an important intermediate (50) acetone forms through a minor pathway from isobutane present in the hydrocarbon feed. Formic acid, propionic acid, and minor quantities of butyric acid are also formed. [Pg.68]

None of the natural sulfides of manganese are of any commercial importance. Some siUcates have been mined. Rhodonite and braunite are of iaterest because these are frequendy associated with the oxide and carbonate minerals. The chemical composition of some common manganese minerals are given ia Table 3. [Pg.487]

Table 4. Chemical Composition of Important Manganese Ores, wt % Dry Basis ... Table 4. Chemical Composition of Important Manganese Ores, wt % Dry Basis ...
Deep-Sea Manganese Nodules. A potentially important future source of manganese is the deep-sea nodules found over wide areas of... [Pg.488]

Ore Size. The particle size of manganese ores is an important consideration for the smelting furnace. In general, the ore size for the furnace charge is —75 mm with a limit to the amount of fines (—6 mm) allowed. Neither electric furnaces nor blast furnaces operate satisfactorily when excessive amounts of fines are in the charge. [Pg.489]

Ground-state electronic configuration is ls 2s 2p 3s 3p 3i 4s. Manganese compounds are known to exist in oxidation states ranging from —3 to +7 (Table 2). Both the lower and higher oxidation states are stabilized by complex formation. In its lower valence, manganese resembles its first row neighbors chromium and especially iron ia the Periodic Table. Commercially the most important valances are Mn, Mn ", or Mn ". ... [Pg.501]

The dependence of the oxidizabiUty of Mn on the degree of alkalinity is an important factor in some processes for the removal of manganese from water and wastewater. Manganese(Il) compounds are fairly stable, although the hydroxide and carbonate precipitated from alkaline solution tend to... [Pg.504]

The brown crystalline manganese(III) acetate dihydrate is of considerable commercial importance because it is often used as the source material for other trivalent manganese compounds. It can be made by oxidation of manganese(II) acetate using chlorine or potassium permanganate, or by reaction of manganese(II) nitrate and acetic anhydride. [Pg.507]

The most important manganese(V) compound is K MnO, a key intermediate in the manufacture of potassium permanganate. Potassium manganate(V) is an easily crystallized salt obtained by reduction of potassium permanganate using sodium sulfite in strong sodium hydroxide solution. This was the first compound to be recognized as exclusively pentavalent. [Pg.514]

Steelmaking. Steelmaking is the most economically important slag refining process (see Steel). Pig iron contains up to 4% carbon, 1% manganese, 1%... [Pg.169]

Sihca is reduced to siUcon at 1300—1400°C by hydrogen, carbon, and a variety of metallic elements. Gaseous siUcon monoxide is also formed. At pressures of >40 MPa (400 atm), in the presence of aluminum and aluminum haUdes, siUca can be converted to silane in high yields by reaction with hydrogen (15). SiUcon itself is not hydrogenated under these conditions. The formation of siUcon by reduction of siUca with carbon is important in the technical preparation of the element and its alloys and in the preparation of siUcon carbide in the electric furnace. Reduction with lithium and sodium occurs at 200—250°C, with the formation of metal oxide and siUcate. At 800—900°C, siUca is reduced by calcium, magnesium, and aluminum. Other metals reported to reduce siUca to the element include manganese, iron, niobium, uranium, lanthanum, cerium, and neodymium (16). [Pg.471]


See other pages where Manganese importance is mentioned: [Pg.638]    [Pg.638]    [Pg.249]    [Pg.250]    [Pg.301]    [Pg.335]    [Pg.486]    [Pg.393]    [Pg.422]    [Pg.59]    [Pg.38]    [Pg.10]    [Pg.67]    [Pg.446]    [Pg.125]    [Pg.227]    [Pg.332]    [Pg.370]    [Pg.488]    [Pg.493]    [Pg.494]    [Pg.494]    [Pg.496]    [Pg.496]    [Pg.503]    [Pg.503]    [Pg.505]    [Pg.511]    [Pg.239]    [Pg.287]    [Pg.25]    [Pg.28]    [Pg.456]    [Pg.477]    [Pg.273]    [Pg.337]   
See also in sourсe #XX -- [ Pg.73 , Pg.88 ]




SEARCH



Manganese - Electrochemical Manufacture, Importance and Applications

Manganese economic importance

© 2024 chempedia.info