Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ruthenium catalysts asymmetric

Asymmetric epoxidation of olefins with ruthenium catalysts based either on chiral porphyrins or on pyridine-2,6-bisoxazoline (pybox) ligands has been reported (Scheme 6.21). Berkessel et al. reported that catalysts 27 and 28 were efficient catalysts for the enantioselective epoxidation of aryl-substituted olefins (Table 6.10) [139]. Enantioselectivities of up to 83% were obtained in the epoxidation of 1,2-dihydronaphthalene with catalyst 28 and 2,6-DCPNO. Simple olefins such as oct-l-ene reacted poorly and gave epoxides with low enantioselectivity. The use of pybox ligands in ruthenium-catalyzed asymmetric epoxidations was first reported by Nishiyama et al., who used catalyst 30 in combination with iodosyl benzene, bisacetoxyiodo benzene [PhI(OAc)2], or TBHP for the oxidation of trons-stilbene [140], In their best result, with PhI(OAc)2 as oxidant, they obtained trons-stilbene oxide in 80% yield and with 63% ee. More recently, Beller and coworkers have reexamined this catalytic system, finding that asymmetric epoxidations could be perfonned with ruthenium catalysts 29 and 30 and 30% aqueous hydrogen peroxide (Table 6.11) [141]. Development of the pybox ligand provided ruthenium complex 31, which turned out to be the most efficient catalyst for asymmetric... [Pg.222]

Further detailed investigations towards new chiral ruthenium catalysts that could enhance enantioselectivity and expand the substrate scope in asymmetric RCM were reported by Grubbs and co-workers in 2006 [70] (Fig. 3.24). Catalysts 59 and 61, which are close derivatives of 56 incorporating additional substituents on the aryl ring para to the ort/to-isopropyl group, maintained similar enantioselectivity than 56b. However, incorporation of an isopropyl group on the side chain ortho to the ortho-isopropyl group 60 led to an increase in enantioselectivity for a number of substrates. [Pg.79]

Several S/N ligands have also been investigated for the asymmetric hydrogenation of prochiral olefins. Thus, asymmetric enamide hydrogenations have been performed in the presence of S/N ligands and rhodium or ruthenium catalysts by Lemaire et al., giving enantioselectivities of up to 70% ee. Two... [Pg.253]

In recent years, the asymmetric hydrogenation of prochiral olefins have been developed in the presence of various chiral sulfur-containing ligands combined with rhodium, iridium or more rarely ruthenium catalysts. The best results have been obtained by using S/P ligands, with enantioselectivities of up to 99% ee in... [Pg.267]

The use of chiral ruthenium catalysts can hydrogenate ketones asymmetrically in water. The introduction of surfactants into a water-soluble Ru(II)-catalyzed asymmetric transfer hydrogenation of ketones led to an increase of the catalytic activity and reusability compared to the catalytic systems without surfactants.8 Water-soluble chiral ruthenium complexes with a (i-cyclodextrin unit can catalyze the reduction of aliphatic ketones with high enantiomeric excess and in good-to-excellent yields in the presence of sodium formate (Eq. 8.3).9 The high level of enantioselectivity observed was attributed to the preorganization of the substrates in the hydrophobic cavity of (t-cyclodextrin. [Pg.217]

Annual Volume 71 contains 30 checked and edited experimental procedures that illustrate important new synthetic methods or describe the preparation of particularly useful chemicals. This compilation begins with procedures exemplifying three important methods for preparing enantiomerically pure substances by asymmetric catalysis. The preparation of (R)-(-)-METHYL 3-HYDROXYBUTANOATE details the convenient preparation of a BINAP-ruthenium catalyst that is broadly useful for the asymmetric reduction of p-ketoesters. Catalysis of the carbonyl ene reaction by a chiral Lewis acid, in this case a binapthol-derived titanium catalyst, is illustrated in the preparation of METHYL (2R)-2-HYDROXY-4-PHENYL-4-PENTENOATE. The enantiomerically pure diamines, (1 R,2R)-(+)- AND (1S,2S)-(-)-1,2-DIPHENYL-1,2-ETHYLENEDIAMINE, are useful for a variety of asymmetric transformations hydrogenations, Michael additions, osmylations, epoxidations, allylations, aldol condensations and Diels-Alder reactions. Promotion of the Diels-Alder reaction with a diaminoalane derived from the (S,S)-diamine is demonstrated in the synthesis of (1S,endo)-3-(BICYCLO[2.2.1]HEPT-5-EN-2-YLCARBONYL)-2-OXAZOLIDINONE. [Pg.266]

Enantioselectivities in the range of 97.7-99.9%, with the majority in the range of 98.4-99.1%, are obtained in the asymmetric hydrogenation of aryl alkyl ketones with ruthenium catalyst 109.641 The same systems can hydrogenate /3-keto esters (95.2-98.6% ee) and a,/i-unsa(urated acids (96.2% in a single example).642... [Pg.113]

In order to show the versatility of the method Davis extended the concept to other hydrophilic liquids such as ethylene glycol and glycerol [70], The reactions then take place at the hydrophilic-hydrophobic liquid interface. In this specific example the supported-phase concept was used for asymmetric reduction using a ruthenium catalyst. [Pg.65]

Palmer and Wills in 1999 reviewed other ruthenium catalysts for the asymmetric transfer hydrogenation of ketones and imines [101]. Gladiali and Mestro-ni reviewed the use of such catalysts in organic synthesis up to 1998 [102]. Review articles that include the use of ruthenium asymmetric hydrogenation catalysts cover the literature from 1981 to 1994 [103, 104], the major contributions... [Pg.67]

A different variation on this theme has been developed by Ito, where the TRAP ligands (37) form a nine-membered metallocycle [157-162]. The ruthenium catalysts seem to function best at low pressures, but highly functionalized dehydroamino esters can be reduced with high degrees of asymmetric induction [157, 159-164], as well as indoles [165]. [Pg.755]

Keywords Asymmetric Hydrogenation m Carbon Dioxide m Carbonylation m Dimethylformamide Enantioselectivity m Formic Acid m Homogeneous Hydrogenation n Palladium Catalysts Radical Reactions m Ruthenium Catalysts m Supercritical Fluids m Solvent Replacement... [Pg.14]

The asymmetric synthesis of allenes via enantioselective hydrogenation of ketones with ruthenium(II) catalyst was reported by Malacria and co-workers (Scheme 4.11) [15, 16]. The ketone 46 was hydrogenated in the presence of iPrOH, KOH and 5 mol% of a chiral ruthenium catalyst, prepared from [(p-cymene) RuC12]2 and (S,S)-TsDPEN (2 equiv./Ru), to afford 47 in 75% yield with 95% ee. The alcohol 47 was converted into the corresponding chiral allene 48 (>95% ee) by the reaction of the corresponding mesylate with MeCu(CN)MgBr. A phosphine oxide derivative of the allenediyne 48 was proved to be a substrate for a cobalt-mediated [2 + 2+ 2] cycloaddition. [Pg.147]

Asymmetric amidation of sp C—H bonds was reported in good yields and moderate enantioselectivities (Scheme 5.27)." ° When benzylic or allylic C—H bonds were used, similar results were also obtained." In these reactions the prepared nitrenes, PhI=NTs, and/or PhI(OAc)2+NH2Ts were used as nitrogen atom transfer sources. The studies showed that Ru=NTs was formed in situ and acted as a possible active intermediate when a ruthenium catalyst was used (Figure 5.12), whereas a radical intermediate might be involved when a manganese catalyst was used. [Pg.144]

Asymmetric Olefin Metathesis Using Ruthenium Catalysts Ruthenium catalysts for asymmetric synthesis have also been developed (Figure 6.3). [Pg.180]

BINAP core-functionalized dendrimers were synthesized by Fan et al. (36), via condensation of Frechet s polybenzyl ether dendritic wedges to 5,5 -diamino-BINAP (26—28). The various generations of BINAP core-functionalized dendrimers were tested in the ruthenium-catalyzed asymmetric hydrogenation of 2-[p-(2-methyl-propyl)phenyl]acrylic acid in the presence of 80 bar H2 pressure and in a 1 1 (v/v) methanol/toluene mixture. As later generations of the in situ prepared cymeneruthe-nium chloride dendritic catalysts were used, higher activities were observed (TOF values were 6.5, 8.3, and 214 h respectively). Relative to those of the BINAP... [Pg.101]

Antimalarials Mefloquine is a major drug for malaria, in particular, for chloroquine-resistant malaria." However, some cases of neuropsychiatric adverse events and the apparition of resistance tend to limit its use. Metabolism into inactive and phototoxic 1 -7/-2-oxoquinoline is blocked by the presence of the CF3 group." Instead of performing the resolution of enantiomers at the end of the synthesis," the asymmetric reduction of the carbonyl group in the presence of ruthenium catalyst and a chiral diphosphine provided mefloquine with an excellent enantiomeric excess (Figure 8.25). °... [Pg.299]

The direct, in situ formation of highly efficient ruthenium catalysts for the asymmetric reduction of ketones was accomplished by combining chiral ligand... [Pg.121]

Dissymmetric ferrocenyldiphosphines have been synthesized from (R)-(+)-N, N -dimethylaminoethylferrocene. The diphosphines have been used as ligands in asymmetric transfer hydrogenation of acetophenone in the presence of ruthenium catalysts.297 Asymmetric transfer hydrogenation of a,/S-unsaturated aldehydes with Hantzsch dihydropyridines and a catalytic amount of MacMillan imidazolidinone salt (12) leads to the saturated carbonyl compounds in high yields and excellent chemo-and enantio-selectivities.298 ... [Pg.120]

Asymmetric transfer hydrogenation of acetylpyridines is possible in the presence of chiral ruthenium catalysts and... [Pg.128]


See other pages where Ruthenium catalysts asymmetric is mentioned: [Pg.225]    [Pg.211]    [Pg.76]    [Pg.363]    [Pg.116]    [Pg.68]    [Pg.681]    [Pg.1365]    [Pg.18]    [Pg.89]    [Pg.52]    [Pg.181]    [Pg.17]    [Pg.20]    [Pg.480]    [Pg.503]    [Pg.363]    [Pg.513]    [Pg.113]    [Pg.422]    [Pg.117]    [Pg.324]    [Pg.698]    [Pg.820]    [Pg.39]    [Pg.134]    [Pg.169]    [Pg.14]    [Pg.113]    [Pg.119]   
See also in sourсe #XX -- [ Pg.1750 ]

See also in sourсe #XX -- [ Pg.1750 ]




SEARCH



ASYMMETRIC HYDROGENATION WITH CHIRAL RUTHENIUM CATALYSTS

Asymmetric Hydrogenation with Ruthenium Catalysts

Catalyst asymmetric

Dynamic kinetic asymmetric ruthenium catalyst

Ruthenium catalysts asymmetric reductive amination

Ruthenium catalysts asymmetric transfer hydrogenation

Ruthenium catalysts keto ester asymmetric hydrogenation

Ruthenium complex catalysts asymmetric

Ruthenium complex catalysts asymmetric hydrogenation

© 2024 chempedia.info