Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Rupturing experiment

Microscopic Interpretation of Atomic Force Microscope Rupture Experiments... [Pg.84]

Fig. 4. Typical AFM rupture experiment (top) Receptor molecules are fixed via linker molecules to a surface (left) in the same way, ligand molecules are connected to the AFM cantilever (right). When pulling the cantilever towards the right, the pulling force applied to the ligand can be measured. At the point of rupture of t he ligand-receptor complex the measured force abruptly drops to zero so that the rupture force can be measured. Fig. 4. Typical AFM rupture experiment (top) Receptor molecules are fixed via linker molecules to a surface (left) in the same way, ligand molecules are connected to the AFM cantilever (right). When pulling the cantilever towards the right, the pulling force applied to the ligand can be measured. At the point of rupture of t he ligand-receptor complex the measured force abruptly drops to zero so that the rupture force can be measured.
Both the AFM rupture experiments as well as our simulation studies focussed on the streptavidin-biotin complex as a model system for specific ligand binding. Streptavidin is a particularly well-studied protein and binds its ligand biotin with high affinity and specificity [51]. Whereas previous experiments (see references in Ref. [49]) and simulation studies [52] referred only to bound/unbound states and the associated kinetics, the recent AFM... [Pg.85]

Fig. 8.15 Changes in interface microstructure in SiC fiber-reinforced BMAS glass-ceramic composites induced by exposure to high temperature oxidizing environments, (a) After tensile stress-rupture experiment at 1100°C, the 90° fibers show a distinct dual layer at the BN coating-fiber interface, (b) After thermal aging for 500 h at 1200°C, a subtle double layer appears at the same site, (c) Near the composite surface, the effects of thermal aging (and oxidation) are more pronounced.24... Fig. 8.15 Changes in interface microstructure in SiC fiber-reinforced BMAS glass-ceramic composites induced by exposure to high temperature oxidizing environments, (a) After tensile stress-rupture experiment at 1100°C, the 90° fibers show a distinct dual layer at the BN coating-fiber interface, (b) After thermal aging for 500 h at 1200°C, a subtle double layer appears at the same site, (c) Near the composite surface, the effects of thermal aging (and oxidation) are more pronounced.24...
Fig. 9.9 depicts some of the results from such trials. Despite some scatter in the angle range 95°-105°, it is readily seen that at 9< 95° none of the films ruptures, while at 0> 105° all the films rupture. Experiments with suspensions of solid particles (Teflon, hydrophobed glass beads and ground glass) showed that in the case of smooth particles, the defoaming... [Pg.642]

The Bueche-Halpin theory accounts well for the principal features of the tensile strength of unfilled rubbers. Because of the direct connection between ab and a viscoelastic function, time-temperature superposition of the strength follows naturally. Halpin (216) also found experimentally that ab was apparently the same function of the reduced time to break, tb/aT, whether the rupture experiment was carried out at constant stress, constant extension or constant rate of extension. [Pg.221]

Rupturing experiments show, that the thickness of the adsorbed layer tends to be I elated to the length of a fully extended liquid crystal molecule... [Pg.30]

Determination of the Weibull parameters comes from rupture experiments of specimens in simple tension or flexure. Regression techniques such as least squares and maximum likelihood have been developed that can determine these parameters from a simplified form of Eq. (1) ... [Pg.448]

This result reflects the Kramers relation (Gardiner, 1985). A millisecond time of unbinding, i.e.. Tact 1 ms, corresponds in this case to a rupture force of 155 pN. For such a force the potential barrier AU is not abolished completely in fact, a residual barrier of 9 kcal/mol is left for the ligand to overcome. The AFM experiments with an unbinding time of 1 ms are apparently functioning in the thermally activated regime. [Pg.56]

These examples illustrate that SMD simulations operate in a different regime than existing micromanipulation experiments. Considerably larger forces (800 pN vs. 155 pN) are required to induce rupture, and the scaling behavior of the drift regime, characterized by (9), differs qualitatively fi om the activated regime as characterized by (7). Hence, SMD simulations of rupture processes can not be scaled towards the experimental force and time scales. [Pg.57]

The rupture force measured in AFM experiments is given, therefore, by the average slope of the energy profile minus a correction related to the effects of thermal fluctuations. Equation (11) demonstrates that the rupture force measured in AFM experiments grows linearly with the activation energy of the system (Chilcotti et ah, 1995). A comparison of (10) and (11) shows that the unbinding induced by stiff springs in SMD simulations, and that induced by AFM differ drastically, and that the forces measured by both techniques cannot be readily related. [Pg.58]

To enable an atomic interpretation of the AFM experiments, we have developed a molecular dynamics technique to simulate these experiments [49], Prom such force simulations rupture models at atomic resolution were derived and checked by comparisons of the computed rupture forces with the experimental ones. In order to facilitate such checks, the simulations have been set up to resemble the AFM experiment in as many details as possible (Fig. 4, bottom) the protein-ligand complex was simulated in atomic detail starting from the crystal structure, water solvent was included within the simulation system to account for solvation effects, the protein was held in place by keeping its center of mass fixed (so that internal motions were not hindered), the cantilever was simulated by use of a harmonic spring potential and, finally, the simulated cantilever was connected to the particular atom of the ligand, to which in the AFM experiment the linker molecule was connected. [Pg.86]

Fig. 5. Theory vs. experiment rupture forces computed from rupture simulations at various time scales (various pulling velocities Vcant) ranging from one nanosecond (vcant = 0.015 A/ps) to 40 picoscconds (vcant = 0.375 A/ps) (black circles) compare well with the experimental value (open diamond) when extrapolated linearly (dashed line) to the experimental time scale of milliseconds. Fig. 5. Theory vs. experiment rupture forces computed from rupture simulations at various time scales (various pulling velocities Vcant) ranging from one nanosecond (vcant = 0.015 A/ps) to 40 picoscconds (vcant = 0.375 A/ps) (black circles) compare well with the experimental value (open diamond) when extrapolated linearly (dashed line) to the experimental time scale of milliseconds.
A signihcant problem in tire combination of solid electrolytes with oxide electrodes arises from the difference in thermal expansion coefficients of the materials, leading to rupture of tire electrode/electrolyte interface when the fuel cell is, inevitably, subject to temperature cycles. Insufficient experimental data are available for most of tire elecuolytes and the perovskites as a function of temperature and oxygen partial pressure, which determines the stoichiometty of the perovskites, to make a quantitative assessment at the present time, and mostly decisions must be made from direct experiment. However, Steele (loc. cit.) observes that tire electrode Lao.eSro.rCoo.aFeo.sOs-j functions well in combination widr a ceria-gadolinia electrolyte since botlr have closely similar thermal expansion coefficients. [Pg.247]

Isotopic labeling experiments have established that C—O bond rupture occurs between the carbonyl carbon and oxygen substitution at the alcohol C—O bond is not involved. [Pg.453]

Explosively Dispersed Vapor Cloud Explosions (Giesbrecht et al. 1981). The Giesbrecht et al. (1981) model is based on a series of small-scale experiments in which vessels of various sizes (0.226-10001) containing propylene were ruptured. (See Section 4.1.2, especially Figure 4.5.) Flame speed, maximum overpressure, and positive-phase duration observed in explosively dispersed clouds are represented as a function of fuel mass. [Pg.134]

Experiments by Schmidli et al. (1990) were focused on the distribution of mass on rupture of a vessel containing a superheated liquid below its superheat-temperature limit. Flasks (50-ml and 100-mI capacity) were partially filled with butane or propane. Typically, when predetermined conditions were reached, the flask was broken with a hammer. Expansion of the unignited cloud was measured by introduction of a smoke curtain and use of a high speed video camera. Large droplets were visible, but a portion of the fuel formed a liquid pool beneath the flask. Figure 6.5 shows that, as superheat was increased, the portion of fuel that... [Pg.163]

Although the experiments reported by Maurer et al. (1977) were performed for a completely different reason, namely, to study effects of vapor cloud explosions (see Section 6.4), fireballs were nevertheless generated. These experiments involved vessles of various sizes (0.226-1000 1) and containing propylene at 40 to 60 bar gauge pressure. The vessels were ruptured, and the released propylene was ignited after a preselected time lag. One of these tests, involving 452 kg of propylene, produced a fireball 45 m in diameter. [Pg.164]

For lower scaled pressures, velocity can be calculated with the equation proposed by Baum (1987) which produces disintegration of both cylindrical and spherical vessels into multiple fragments (Vj = O.SSoo ). Such a result can also be obtained by use of Figure 6.33. However, actual experience is that ruptures rarely... [Pg.232]

The most frequent cause of damage and even explosion in boilers is a low-water condition. This will expose the heating surfaces, which ultimately overheat and rupture under the operating pressure. Experience has shown that since the introduction of controls for unattended automatic operation of boilers the accident rate has increased. Investigation invariably shows that lack of maintenance has been the main contributing factor. It is therefore imperative that personnel responsible for the running of the boiler plant be fully trained and conversant with its safe operation. [Pg.365]


See other pages where Rupturing experiment is mentioned: [Pg.86]    [Pg.87]    [Pg.75]    [Pg.1740]    [Pg.172]    [Pg.464]    [Pg.340]    [Pg.86]    [Pg.87]    [Pg.75]    [Pg.1740]    [Pg.172]    [Pg.464]    [Pg.340]    [Pg.43]    [Pg.58]    [Pg.87]    [Pg.17]    [Pg.240]    [Pg.395]    [Pg.51]    [Pg.294]    [Pg.409]    [Pg.76]    [Pg.199]    [Pg.57]    [Pg.515]    [Pg.1157]    [Pg.1165]    [Pg.1280]    [Pg.770]    [Pg.287]    [Pg.127]    [Pg.276]   
See also in sourсe #XX -- [ Pg.46 ]




SEARCH



Rupture

Rupturing

© 2024 chempedia.info