Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Risk assessment types

Trial and error is often the typical procedure that is used to implement enhanced biorestoration. In simple cases of gasoline cleanups, these may be appropriate however, when the chemicals involved are recalcitrant (difficult to degrade), toxic, or present in a complex geologic environment (i.e., low-permeability soil, lateral or vertical heterogeneities, etc.), enhanced biorestoration can be difficult, and risk assessment-type analyses may be more suited for a particular site. [Pg.407]

There are a large number of standard methods suitable for each stage in the hazard analysis and risk assessment procedure. The selection of the proper method depends on several factors. Some of these are the type of process, the stage in the lifetime of the process, the experience and capabiUties of the participants, and the step in the procedure that is being examined. Information regarding the selection of the proper procedure is available in an excellent and comprehensive reference (1). [Pg.470]

Risk-Based Inspection. Inspection programs developed using risk analysis methods are becoming increasingly popular (15,16) (see Hazard ANALYSIS AND RISK ASSESSMENT). In this approach, the frequency and type of in-service inspection (IS I) is determined by the probabiUstic risk assessment (PRA) of the inspection results. Here, the results might be a false acceptance of a part that will fail as well as the false rejection of a part that will not fail. Whether a plant or a consumer product, false acceptance of a defective part could lead to catastrophic failure and considerable cost. Also, the false rejection of parts may lead to unjustified, and sometimes exorbitant, costs of operation (2). Risk is defined as follows ... [Pg.123]

Hazard identification involves gathering and evaluating data on the types of health injury or disease that may be produced by a chemical and on the conditions of exposure under which injury or disease is produced. It may also involve characterization of the behavior of a chemical within the body and the interactions it undergoes with organs, cells, or even parts of cells. Hazard identification is not risk assessment. It is a scientific determination of whether observed toxic effects in one setting will occur in other settings. [Pg.226]

Core damage and containment performance was assessed for accident sequences, component failure, human error, and containment failure modes relative to the design and operational characteristics of the various reactor and containment types. The IPEs were compared to standards for quality probabilistic risk assessment. Methods, data, boundary conditions, and assumptions are considered to understand the differences and similarities observed. [Pg.392]

The Pickering A Risk Assessment (PARA) (Ontario Hydro, 1995) is also a level 3 PSA for 1 of the 4 units at Pickering. A difference between PARA and DPSE is that sequences beyond the design basis were modeled using the MAAP-CANDU codes with best estimate assumptions. Other parts of the analysis used licensing-type conservative assumptions. [Pg.406]

Generally, risk assessment has focused on the first type of error, since the main interest in human reliability was in the context of human actions that were required as part of an emergency response. However, a comprehensive Consequence Analysis has to also consider other types, since both of these outcomes could constitute sources of risk to the individual or the plant. [Pg.216]

It is important to remember that unexpected benefits may arise from integration. You should actively look for these benefits and document them. It may be possible to improve some of these benefits by small modifications to the plan or integration framework. Such additional work should be undertaken only with the appropriate approvals. Never the less, if any benefits would only be achieved with the integration project, you should include them in your overall statement of benefits. An example of this might be the better allocation of capital to risk reduction efforts when an integrated risk assessment is done-addressing several different types of risk. [Pg.116]

To estimate tlie potential iiupaet on tlie publie or tlie environment of aeeidents of different types, the likely emergeney zone must be studied. For example, a liazardous gas leak, fire, or explosion may eause a toxie cloud to spread over a great distance. The minimum atmospheric dispersion model. Vtirious models can be used tlie more difficult models produce more realistic results, but tlie simpler and faster models may provide adequate data for planning purposes. A more tliorough discussion of atmospheric dispersion is presented in Part 111 - Healtli Risk Assessment. [Pg.88]

Since 1970 tlie field of healtli risk assessment Itas received widespread attention witliin both tlie scientific and regulatoiy committees. It has also attracted tlie attention of the public. Properly conducted risk assessments have received fairly broad acceptance, in part because they put into perspective the terms to. ic, Itazard, and risk. Toxicity is an inlierent property of all substances. It states tliat all chemical and physical agents can produce adverse healtli effects at some dose or under specific exposure conditions. In contrast, exposure to a chemical tliat lias tlie capacity to produce a particular type of adverse effect, represents a health hazard. Risk, however, is tlie probability or likelihood tliat an adverse outcome will occur in a person or a group tliat is exposed to a particular concentration or dose of the hazardous agent. Tlierefore, risk can be generally a function of exposure and dose. Consequently, healtli risk assessment is defined as tlie process or procedure used to estimate tlie likelihood that... [Pg.287]

A risk estimate indicates Uie likelihood of occurrence of the different types of health or enviroinnental effects in exposed populations. Risk assessment should include both liuimn health and environmental evaluations (i.c., impacts on ecosystems). Ecological impacts include actual or potential effects on plants and animals (other than domesticated species). The number produced from the risk characleriznlion, representing the probability of adi crse... [Pg.294]

Tlie reader should also note that tlie risk to people can be defined in terms of injury or fatality. The use of injuries as a basis of risk evaluation may be less disturbing tlian tlie use of fatalities. However, tliis introduces problems associated with degree of injury and comparability between different types of injuries. Further complications am arise in a risk assessment when dealing witli multiple hazards. For example, how are second-degree bums, fragment injuries, and injuries due to toxic gas e.xposure combined Even where only one type of effect (e.g., tlueshold to.xic exposure) is being evaluated, different durations of e.xposure can markedly affect tlie severity of injury. [Pg.515]

There is a continuing interest in the development of biomarker assays for use in environmental risk assessment. As discussed elsewhere (Section 16.6), there are both scientific and ethical reasons for seeking to introduce in vitro assays into protocols for the regulatory testing of chemicals. Animal welfare organizations would like to see the replacement of toxicity tests by more animal-friendly alternatives for all types of risk assessment—whether for environmental risks or for human health. [Pg.314]

Evaluating risk to process plant building occupants can be accomplished through detailed qualitative and/or quantitative risk assessment. However, because of the large numbers of buildings and varying plant situations involved, these types of studies could be costly and time-consuming if applied in all cases, and should be reserved for those situations for which cost-effective solutions cannot otherwise be identified. [Pg.89]

For human health risk assessment, it is necessary to elaborate realistic scenarios. Knowledge of real scenarios where the contaminant is emitted to the environment will help to obtain information about the fate and transport of the contaminant once emitted to the environment and the route of exposure for the human beings living in this scenario of concern. There are different types of exposure, i.e., direct, indirect (as is the case of food contaminated by the air, water, or soil contaminated by the emission), occupational exposure, and consumer goods coming from outside the scenario of concern. Depending on the objective of the study, it will be necessary to consider in the exposure assessment one or more types of exposure. [Pg.96]

Besides the LCA approach, also risk assessment can be performed analysing the chemical compounds or modelling via predictive exposure models. Both types of approaches have their justification to measure environmental concentrations of chemicals in the environment with laboratory measurement is still the most reliable way for determination. But it goes along with the disadvantage of high investments concerning time and money. Besides that laboratory approaches are limited in terms of space and time, and in consequence, the survey of many micro-pollutants and their... [Pg.467]


See other pages where Risk assessment types is mentioned: [Pg.66]    [Pg.445]    [Pg.2209]    [Pg.177]    [Pg.405]    [Pg.113]    [Pg.285]    [Pg.322]    [Pg.405]    [Pg.155]    [Pg.157]    [Pg.322]    [Pg.327]    [Pg.600]    [Pg.387]    [Pg.116]    [Pg.6]    [Pg.247]    [Pg.609]    [Pg.950]    [Pg.310]    [Pg.17]    [Pg.645]    [Pg.238]    [Pg.415]    [Pg.15]    [Pg.351]    [Pg.372]    [Pg.468]    [Pg.477]    [Pg.13]    [Pg.229]   
See also in sourсe #XX -- [ Pg.16 , Pg.17 ]




SEARCH



Chemicals risk assessment types

Risk types

Types of Data Used in Risk Assessment

Types of risk assessment

© 2024 chempedia.info