Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Rhodium sulfide-carbon

Guild AF, Gancs L, Allen RJ, Mukerjee S (2007) Carbon-supported low-loading rhodium sulfide electrocatalysts for oxygen depolarized cathode applications. Appl Catal A 326 227-235... [Pg.344]

Dibutylamine, piperidine, N-ethylcyclohexylamine, N-ethyldicyclohexylamine, and the ketones were reagent grade chemicals. The 5% palladium on carbon, 5% platinum on carbon, sulfided 5% platinum on carbon and sulfided 5% rhodium on carbon catalysts were obtained from Engelhard Industries. The 20% molybdenum sulfide on alumina (Girdler T-318) was obtained from the Chemetron Corp. Palladium chloride was obtained from Matheson, Coleman and Bell. Ruthenium trichloride was obtained from Ventron. [Pg.353]

Platinum catalysts have been shown to be highly selective for the hydrogenation of halonitrobenzenes to haloanilines. A number of effective platinum catalysts or catalyst systems have been described in the literature, mostly in patents.96 Dovell and Greenfield found that the sulfides of the platinum metals and cobalt were highly selective in the hydrogenation of halo-substituted nitrobenzenes.117-119 There was no detectable dechlorination with the sulfides of palladium, platinum, rhodium, ruthenium, and cobalt no detectable debromination occurred with platinum sulfide trace debromination occurred with rhodium sulfide and cobalt sulfide and appreciable debromination occurred with palladium sulfide. Typical hydrogenations with 5% platinum sulfide on carbon catalyst are given in eqs. 9.52 and 9.53 with 2,5-dichloronitrobenzene and p-bromobenzene, respectively.118... [Pg.344]

PuAl20gy Pt-asbestosy Pt-Cy Pt-silk PtyFe-C Pt02, Platinum rhodium oxide Platinum sulfide-carbon H tClg... [Pg.534]

Recently, rhodium and ruthenium-based carbon-supported sulfide electrocatalysts were synthesized by different established methods and evaluated as ODP cathodic catalysts in a chlorine-saturated hydrochloric acid environment with respect to both economic and industrial considerations [46]. In particular, patented E-TEK methods as well as a non-aqueous method were used to produce binary RhjcSy and Ru Sy in addition, some of the more popular Mo, Co, Rh, and Redoped RuxSy catalysts for acid electrolyte fuel cell ORR applications were also prepared. The roles of both crystallinity and morphology of the electrocatalysts were investigated. Their activity for ORR was compared to state-of-the-art Pt/C and Rh/C systems. The Rh Sy/C, CojcRuyS /C, and Ru Sy/C materials synthesized by the E-TEK methods exhibited appreciable stability and activity for ORR under these conditions. The Ru-based materials showed good depolarizing behavior. Considering that ruthenium is about seven times less expensive than rhodium, these Ru-based electrocatalysts may prove to be a viable low-cost alternative to Rh Sy systems for the ODC HCl electrolysis industry. [Pg.321]

TriarylimidazoIes have been isolated from reactions of alkenes, carbon monoxide and ammonia in the presence of a rhodium catalyst, while benzylamines react with catalytic quantities of metal carbonyls to form the same compounds [69, 70]. 4-Aminoimidazolium salts have been made by assembling iminochloro sulfides, benzaldimines and isocyanides in a process believed to involve a transient 7V-imidobenzylideniminium halide intermediate. Yields of 25-76% are reported [71]. [Pg.161]

The hydroformylation of alkenes is commonly run using soluble metal carbonyl complexes as catalysts but there are some reports of heterogeneously catalyzed reactions of olefins with hydrogen and carbon monoxide. Almost all of these are vapor phase reactions of ethylene or propylene with hydrogen and carbon monoxide catalyzed by rhodium, " 20 ruthenium,nickel, 22,123 cobalt, 23,124 and cobalt-molybdenum 23 catalysts as well as various sulfided metal catalysts. 23,125,126... [Pg.596]

Catalytic reductions have been carried out under an extremely wide range of reaction conditions. Temperatures of 20 C to over 300 C have been described. Pressures from atmospheric to several thousand pounds have been used. Catal3rsts have included nickel, copper, cobalt, chromium, iron, tin, silver, platinum, palladium, rhodium, molybdenum, tungsten, titanium and many others. They have been used as free metals, in finely divided form for enhanced activity, or as compounds (such as oxides or sulfides). Catalysts have been used singly and in combination, also on carriers, such as alumina, magnesia, carbon, silica, pumice, clays, earths, barium sulfate, etc., or in unsupported form. Reactions have been carried out with organic solvents, without solvents, and in water dispersion. Finally, various additives, such as sodium acetate, sodium hydroxide, sulfuric acid, ammonia, carbon monoxide, and others, have been used for special purposes. It is obvious that conditions must be varied from case to case to obtain optimum economics, yield, and quality. [Pg.175]

Many different catalysts have been used for catalytic hydrogenations they are mainly finely divided metals, metallic oxides or sulfides. The most commonly used in the laboratory are the platinum metals (platinum, palladium and, increasingly, rhodium and ruthenium) and nickel. The catalysts are not specific and may be used for a variety of different reductions. The most widely used are palladium and platinum catalysts. They are used either as the finely divided metal or, more commonly, supported on a suitable carrier such as activated carbon, alumina or barium sulfate. [Pg.406]


See other pages where Rhodium sulfide-carbon is mentioned: [Pg.534]    [Pg.294]    [Pg.633]    [Pg.332]    [Pg.588]    [Pg.598]    [Pg.304]    [Pg.534]    [Pg.294]    [Pg.633]    [Pg.332]    [Pg.588]    [Pg.598]    [Pg.304]    [Pg.321]    [Pg.68]    [Pg.53]    [Pg.591]    [Pg.164]    [Pg.176]    [Pg.290]    [Pg.210]    [Pg.141]    [Pg.164]    [Pg.176]    [Pg.293]    [Pg.220]    [Pg.17]    [Pg.447]    [Pg.448]    [Pg.67]    [Pg.523]    [Pg.436]    [Pg.216]    [Pg.242]    [Pg.139]    [Pg.478]    [Pg.99]    [Pg.174]    [Pg.7]    [Pg.116]   
See also in sourсe #XX -- [ Pg.22 , Pg.421 ]




SEARCH



Carbon sulfides

Carbon sulfids

Rhodium carbon

© 2024 chempedia.info