Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Rhodium with sulfides

Photoelectrochemical hydrogenation of double and triple bonds has been reported with sulfide anion acting as a sacrificial donor, Eq. (35)With CdS metallized with platinum or rhodium as the photocatalyst, hydrogenation was found to be about... [Pg.90]

Rhodium occurs native with other platinum metals in river sands of the Urals and in North and South America. It is also found with other platinum metals in the copper-nickel sulfide area of the Sudbury, Ontario region. Although the quantity occurring here is very small, the large tonnages of nickel processed make the recovery commercially feasible. The annual world production of rhodium is only 7 or 8 tons. [Pg.110]

More than 200 ores are known to contain cobalt but only a few are of commercial value. The more important are arsenides and sulfides such as smaltite, C0AS2, cobaltite (or cobalt glance), CoAsS, and linnaeite, C03S4. These are invariably associated with nickel, and often also with copper and lead, and it is usually obtained as a byproduct or coproduct in the recovery of these metals. The world s major sources of cobalt are the African continent and Canada with smaller reserves in Australia and the former USSR. All the platinum metals are generally associated with each other and rhodium and iridium therefore occur wherever the other platinum metals are found. However, the relative proportions of the individual metals are by no means constant and the more important sources of rhodium are the nickel-copper-sulfide ores found in South Africa and in Sudbury, Canada, which contain about 0.1% Rh. Iridium is usually obtained from native osmiridium (Ir 50%) or iridiosmium (Ir 70%) found chiefiy in Alaska as well as South Africa. [Pg.1114]

The carbenoid displacement reaction (see Section 1.4.5.2.1.4.) of the optically active acetoxy sulfide derivative 19 (or the corresponding methoxymethyl ether) with diazomalonate in the presence of a catalytic amount of rhodium acetate in refluxing benzene affords the tram-alkylation productl22. [Pg.836]

Recently, rhodium and ruthenium-based carbon-supported sulfide electrocatalysts were synthesized by different established methods and evaluated as ODP cathodic catalysts in a chlorine-saturated hydrochloric acid environment with respect to both economic and industrial considerations [46]. In particular, patented E-TEK methods as well as a non-aqueous method were used to produce binary RhjcSy and Ru Sy in addition, some of the more popular Mo, Co, Rh, and Redoped RuxSy catalysts for acid electrolyte fuel cell ORR applications were also prepared. The roles of both crystallinity and morphology of the electrocatalysts were investigated. Their activity for ORR was compared to state-of-the-art Pt/C and Rh/C systems. The Rh Sy/C, CojcRuyS /C, and Ru Sy/C materials synthesized by the E-TEK methods exhibited appreciable stability and activity for ORR under these conditions. The Ru-based materials showed good depolarizing behavior. Considering that ruthenium is about seven times less expensive than rhodium, these Ru-based electrocatalysts may prove to be a viable low-cost alternative to Rh Sy systems for the ODC HCl electrolysis industry. [Pg.321]

We begin with the structure of a noble metal catalyst. The emphasis is on the preparation of rhodium on aluminum oxide and the nature of the metal-support interaction. Next we focus on a promoted surface in a review of potassium on noble metals. This section illustrates how single crystal techniques have been applied to investigate to what extent promoters perturb the surface of a catalyst. The third study deals with the sulfidic cobalt-molybdenum catalysts used in hydrotreating reactions. Here we are concerned with the composition and structure of the catalytically active... [Pg.246]

The rhodium-catalyzed hydroboration has opened the way to cyclization reactions starting from dienes [92], For instance, rhodium-catalyzed hydroboration of the terminal alkenyl group of an os/Tunsaturated lactone followed by reaction with the PTOC-OMe chain transfer reagent afforded the bicyclic a-S-pyridyl lactone in 63% yield (Scheme 39). After oxidation of the sulfide with m-CPBA, thermal elimination of the sulfoxide afforded the corresponding a-methylene lactone in 65% yield. Interestingly, such bicyclic a-methylenelactones are substructures that can be found in many natural products such as mirabolide [93]. [Pg.103]

In order to get a catalytic cycle it is necessary that the metal sulfide intermediate can react with hydrogen to form the reduced metal complex (or compound) and H2S. For highly electropositive metals (non-noble metals) this is not possible for thermodynamic reasons. The co-ordination chemistry and the oxidative addition reactions that were reported mainly involved metals such as ruthenium, iridium, platinum, and rhodium. [Pg.55]

Neutralization of the strip solution with hydrochloric acid gives Pd(NH3)2-CI2 as product. One of the problems that has emerged is the formation of di- -hexylsulfoxide [34] by oxidation of the sulfide. This may cause several problems including extraction of iron(III) that is strongly dependent on the HCl concentration. The iron can easily be stripped by water. There have also been indications of a buildup of rhodium in the extract phase that again can be explained by the extraction of anionic rhodium species by the sulfoxide. One benefit from the presence of the sulfoxide is that the rate of palladium extraction is increased by the presence of the protonated sulfoxide at high acidities however, this kinetic enhancement is less that found with TOA HCl, which remains protonated even at low acidities. [Pg.491]

A different approach to synthesize nonstabilized ylide complexes is the reaction of halomethyl-metallic precursors with the corresponding nucleophile EZ . This method is quite general and usually occurs in very mild reaction conditions. Platinum, rhodium, iron, and palladium complexes (21)-(25) (Scheme 8) have been prepared, using phosphines [79-83], amines [84], or sulfides [85] as nucleophiles. Some of the most representative examples are shown in Scheme 8. [Pg.23]

Although all of the above elements catalyze hydrogenation, only platinum, palladium, rhodium, ruthenium and nickel are currently used. In addition some other elements and compounds were found useful for catalytic hydrogenation copper (to a very limited extent), oxides of copper and zinc combined with chromium oxide, rhenium heptoxide, heptasulfide and heptaselen-ide, and sulfides of cobalt, molybdenum and tungsten. [Pg.4]

The synthesis of thiiranes with subsequent elimination of sulfur is an important procedure for the creation of C=C bonds, especially for sterically crowded systems (47,48), in analogy to the Eschenmoser-sulfide-contraction reaction (116). The spontaneous elimination of sulfur was observed in the rhodium-catalyzed reaction of diazo compound 62, which gave rise to the formation of cyclopentenone derivative 63 (117) (Scheme 5.24). A synthesis of indolizomycin was published by Danishefsky and co-workers (118) and involved a similar annulation step. In this case, however, the desulfurization reaction was achieved by treatment with Raney Ni. [Pg.330]

For both the dipalladium and palladium-platinum complexes the metal-metal bond is unusually reactive and a number of small molecules undergo an insertion reaction with (9) to give (10 equation 8). The corresponding sulfide-bridged dipalladium dimer can be prepared from the reaction of S8 or MeCHCH2S with (9).83 A mixed rhodium-palladium dimer can also be prepared from (9) (see Scheme 6).84... [Pg.1105]

James et al. have shown that dialkyl sulfide complexes of rhodium can act as homogeneous hydrogenation catalysts. The complex [RhCl3(SEt2)3] in DMA solution is believed to react with hydrogen according to equations (29)-(31). [Pg.245]


See other pages where Rhodium with sulfides is mentioned: [Pg.222]    [Pg.222]    [Pg.165]    [Pg.165]    [Pg.176]    [Pg.1118]    [Pg.171]    [Pg.1003]    [Pg.357]    [Pg.315]    [Pg.321]    [Pg.290]    [Pg.210]    [Pg.210]    [Pg.1901]    [Pg.171]    [Pg.137]    [Pg.141]    [Pg.159]    [Pg.194]    [Pg.530]    [Pg.10]    [Pg.164]    [Pg.153]    [Pg.166]    [Pg.9]    [Pg.269]    [Pg.165]    [Pg.176]    [Pg.686]    [Pg.293]    [Pg.446]    [Pg.750]    [Pg.83]    [Pg.1988]   
See also in sourсe #XX -- [ Pg.1118 ]




SEARCH



© 2024 chempedia.info