Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Rhodium chloride catalyst

The tris(triphenylphosphine)rhodium chloride catalyst was prepared according to the procedure of G. Wilkinson and co-workers.4... [Pg.64]

Takahashi, N., Mechanism of ethylene dimerization by supported rhodium chloride catalyst,/. Mol. Catal, 3, 271, 1978. [Pg.115]

The unit has virtually the same flow sheet (see Fig. 2) as that of methanol carbonylation to acetic acid (qv). Any water present in the methyl acetate feed is destroyed by recycle anhydride. Water impairs the catalyst. Carbonylation occurs in a sparged reactor, fitted with baffles to diminish entrainment of the catalyst-rich Hquid. Carbon monoxide is introduced at about 15—18 MPa from centrifugal, multistage compressors. Gaseous dimethyl ether from the reactor is recycled with the CO and occasional injections of methyl iodide and methyl acetate may be introduced. Near the end of the life of a catalyst charge, additional rhodium chloride, with or without a ligand, can be put into the system to increase anhydride production based on net noble metal introduced. The reaction is exothermic, thus no heat need be added and surplus heat can be recovered as low pressure steam. [Pg.77]

Butynediol is more difficult to polymerize than propargyl alcohol, but it cyclotrimerizes to hexamethylolbenzene [2715-91 -5] (benzenehexamethanol) with a nickel carbonyl—phosphine catalyst (64) with a rhodium chloride—arsine catalyst a yield of 70% is claimed (65). [Pg.106]

The use of silver fluoroborate as a catalyst or reagent often depends on the precipitation of a silver haUde. Thus the silver ion abstracts a CU from a rhodium chloride complex, ((CgH )2As)2(CO)RhCl, yielding the cationic rhodium fluoroborate [30935-54-7] hydrogenation catalyst (99). The complexing tendency of olefins for AgBF has led to the development of chemisorption methods for ethylene separation (100,101). Copper(I) fluoroborate [14708-11-3] also forms complexes with olefins hydrocarbon separations are effected by similar means (102). [Pg.168]

The avermectins also possess a number of aUyflc positions that are susceptible to oxidative modification. In particular the 8a-methylene group, which is both aUyflc and alpha to an ether oxygen, is susceptible to radical oxidation. The primary product is the 8a-hydroperoxide, which has been isolated occasionally as an impurity of an avermectin B reaction (such as the catalytic hydrogenation of avermectin B with Wilkinson s rhodium chloride-triphenylphosphine catalyst to obtain ivermectin). An 8a-hydroxy derivative can also be detected occasionally as a metaboUte (42) or as an impurity arising presumably by air oxidation. An 8a-oxo-derivative can be obtained by oxidizing 5-0-protected avermectins with pyridinium dichromate (43). This also can arise by treating the 8a-hydroperoxide with base. [Pg.283]

The activity of homogeneous catalysts also has been demonstrated Wilkin son s catalyst trisftriphenylphosphme rhodium chloride induces perfluoroalkyl iodides to add to olefins at 80 [70] (equation 10) Tetrakis(triphenylphosphine)-... [Pg.748]

Catalyst A mixture of 5.26 g of rhodium chloride trihydrate, 0.34 g of palladium chloride, 18 g of carbon (Darco G-60), and 200 ml of water is rapidly stirred and heated to 80°. A solution of lithium hydroxide hydrate (2.7 g) in 10 ml of water is added in one portion and the heating discontinued. Stirring is continued overnight, after which the mixture is filtered and washed with 100 ml of 0.5 % aqueous acetic acid. The product is dried in a vacuum oven at 65°. About 20 g of the catalyst is thus obtained. [Pg.42]

When irradiated in the presence of norbornadiene and high-pressure synthesis gas, rhodium chloride is converted to a catalyst which is active for a variety of reactions. /2A/. The salt is probably converted photochemically to the rhodium norbornadiene complex 9. This dimer may undergo a consecutive photoreaction to give the monomeric hydrido complex 10, which is the actual catalyst for polymerisation, hydrogenation, and hydroformylation reactions. [Pg.152]

One last remark concerning the two catalysts we have discussed in more detail, cationic rhodium catalysts and the neutral chloride catalyst of Wilkinson. The difference of the catalytic system discussed above from that of the Wilkinson catalyst lies in the sequence of the oxidative addition and the alkene complexation. The hydrogenation of the cinnamic acid derivative involves a cationic catalyst that first forms the alkene complex the intermediate alkene (enamide) complex can be observed spectroscopically. [Pg.86]

Many catalysts, certainly those most widely used such as platinum, palladium, rhodium, ruthenium, nickel, Raney nickel, and catalysts for homogeneous hydrogenation such as tris(triphenylphosphine)rhodium chloride are now commercially available. Procedures for the preparation of catalysts are therefore described in detail only in the cases of the less common ones (p. 205). Guidelines for use and dosage of catalysts are given in Table 1. [Pg.5]

A very active elemental rhodium is obtained by reduction of rhodium chloride with sodium borohydride [27]. Supported rhodium catalysts, usually 5% on carbon or alumina, are especially suited for hydrogenation of aromatic systems [iTj. A mixture of rhodium oxide and platinum oxide was also used for this purpose and proved better than platinum oxide alone [i5, 39]. Unsaturated halides containing vinylic halogens are reduced at the double bond without hydrogenolysis of the halogen [40]. [Pg.7]

Divalent sulfur is a poison for most noble metal catalysts so that catalytic hydrogenation of sulfur-containing compounds poses serious problems (p. 10). However, allyl phenyl sulfide was hydrogenated over tris trisphenyl-phosphine)rhodium chloride in benzene to give 93% yield of phenyl propyl sulfide [674. ... [Pg.86]

Reduction of the double bond only was achieved by catalytic hydrogenation over palladium prepared by reduction with sodium borohydride. This catalyst does not catalyze hydrogenation of the aldehyde group [31]. Also sodium borohydride-reduced nickel was used for conversion of cinnamaldehyde to hydrocinnamaldehyde [31]. Homogeneous hydrogenation over tris(triphenylphosphine)rhodium chloride gave 60% of hydrocinnamaldehyde and 40% of ethylbenzene [5(5]. Raney nickel, by contrast, catalyzes total reduction to hydrocinnamyl alcohol [4S. Total reduction of both the double... [Pg.101]

Preparation of the Catalyst Tris(triphenylphosphine)rhodium Chloride [57]... [Pg.206]

The addition of olefins to olefins426 can also be accomplished by bases427 as well as by the use of catalyst systems428 consisting of nickel complexes and alkylaluminum compounds (known as Ziegler catalysts), 29 catalysts derived from rhodium chloride,430 and other transition metal catalysts. These and similar catalysts also catalyze the 1,4-addition of olefins to conjugated dienes,431 e.g.,... [Pg.793]

Previous work has shown that the electronic characteristics of the benzene substituent in triarylphosphine chlororhodium complexes have a marked influence on the rate of olefin hydrogenation catalyzed by these compounds. Thus, in the hydrogenation of cyclohexene using L3RhCl the rate decreased as L = tri-p-methoxyphenylphosphine > triphenylphosphine > tri-p-fluorophenylphosphine (14). In the hydrogenation of 1-hexene with catalysts prepared by treating dicyclooctene rhodium chloride with 2.2-2.5 equivalents of substituted triarylphosphines, the substituent effect on the rate was p-methoxy > p-methyl >> p-chloro (15). No mention could be found of any product stereochemistry studies using this type of catalyst. [Pg.125]

Wilkinson and co-workers (3) showed that the maximum activity of the tertiary phosphine rhodium(I) chloride catalysts occurred at a ligand. -rhodium ratio of about 2. This ratio was used in the systems studied for the effects of hydrogen pressure (Table I). In the triphenyl-phosphine system (abbreviated as L°), the rate of hydrogenation increased with pressure in the accessible pressure range, in accord with previous observations (2) by Wilkinson and co-workers. However, with the p-dimethylamino substituted tertiary phosphines L1 and L2 the rates of hydrogenation were essentially independent of the hydrogen pressure within the experimental errors. For tris (p-dimethylaminophenyl) phos-... [Pg.137]

When either an alcohol or an amine function is present in the alkene, the possibility for lactone or lactam formation exists. Cobalt or rhodium catalysts convert 2,2-dimethyl-3-buten-l-ol to 2,3,3-trimethyl- y-butyrolactone, with minor amounts of the 8-lactone being formed (equation 51).2 In this case, isomerization of the double bond is not possible. The reaction of allyl alcohols catalyzed by cobalt or rhodium is carried out under reaction conditions that are severe, so isomerization to propanal occurs rapidly. Running the reaction in acetonitrile provides a 60% yield of lactone, while a rhodium carbonyl catalyst in the presence of an amine gives butane-1,4-diol in 60-70% (equation 52).8 A mild method of converting allyl and homoallyl alcohols to lactones utilizes the palladium chloride/copper chloride catalyst system (Table 6).79,82 83... [Pg.941]


See other pages where Rhodium chloride catalyst is mentioned: [Pg.229]    [Pg.229]    [Pg.77]    [Pg.53]    [Pg.345]    [Pg.95]    [Pg.320]    [Pg.374]    [Pg.347]    [Pg.44]    [Pg.68]    [Pg.499]    [Pg.511]    [Pg.9]    [Pg.47]    [Pg.119]    [Pg.119]    [Pg.140]    [Pg.570]    [Pg.570]    [Pg.133]    [Pg.199]    [Pg.212]   
See also in sourсe #XX -- [ Pg.159 ]




SEARCH



Chloride, catalysts

Rhodium catalysts catalyst

Rhodium chloride

© 2024 chempedia.info