Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Tris catalysts

The following data give the yields of a product that resulted from trying catalysts from four different suppliers in a process. Deter-... [Pg.100]

We tried catalysts between 0.5 to 15 wt % (as M0O3 content) by impregnation on Si02 A150. Table 1 summarizes the results an optimum could be seen between near 7 % that can be correlated with a maximum of Bronsted type site [Polymolybdic acid] as observed by A.CASTELLAN [15b]j (cf Fig. 1). [Pg.680]

The above estimates of pressure variations suggest that their magni-tude as a percentage of the absolute pressure may not be very large except near the limit of Knudsen diffusion. But in porous catalysts, as we have seen, the diffusion processes to be modeled often lie in the Intermediate range between Knudsen streaming and bulk diffusion control. It is therefore tempting to try to simplify the flux equations in such a way as to... [Pg.132]

Acetic acid can be chlorinated by gaseous chlorine in the presence of red phosphorus as catalyst to yield successively mono-, di-, and tri-chloroacetic acid the reaction proceeds better in bright sunlight. If the chlorination is stopped when approximately one molecule of chlorine per molecule of acetic acid is absorbed the main product is monochloroacetic acid ... [Pg.427]

To separate the oil added an equal volume of fresh cool water (note waited until solution cooled before adding the water). The oil started to drop out perfectly, used DCM to extract all traces of the oil. This woik up is by far the cleanest, easiest and simplest to date... (This dreamer was tried all method of ketone synthesis)... Once the oil was extracted, the extracts were pooled washed with sodium bicarbonate lx, saturated solution of NaCI 1x, and two washes with fresh dHzO... Some time was required for the work up as there was a little emulsion from the use of the base wash and then with the first water wash. The JOC ref suggested using an alumina column to remove the catalyst (could be a better way to go). [Pg.81]

Biological catalysts — enzymes — are usually proteins. The development of new protein syntheses is nowadays dominated by genetic protein engineering (see section 4.1.2.6). Bio-organic approaches towards novel catalytically active structures and replicating systems try to manage without biopolymers. [Pg.346]

In addition, boron, aluminum, and gallium tris(triduoromethanesulfonates) (tridates), M(OTf)2 and related perduoroalkanesulfonates were found effective for Friedel-Crafts alkylations under mild conditions (200). These Lewis acids behave as pseudo haUdes. Boron tris(tridate) shows the highest catalytic activity among these catalysts. A systematic study of these catalysts in the alkylation of aromatics such as benzene and toluene has been reported (201). [Pg.564]

Tris(2,4-pentanedionato)iron(III) [14024-18-1], Fe(C H202)3 or Fe(acac)3, forms mby red rhombic crystals that melt at 184°C. This high spin complex is obtained by reaction of iron(III) hydroxide and excess ligand. It is only slightly soluble in water, but is soluble in alcohol, acetone, chloroform, or benzene. The stmcture has a near-octahedral arrangement of the six oxygen atoms. Related complexes can be formed with other P-diketones by either direct synthesis or exchange of the diketone into Fe(acac)3. The complex is used as a catalyst in oxidation and polymerization reactions. [Pg.438]

From the time that isoprene was isolated from the pyrolysis products of natural mbber (1), scientific researchers have been attempting to reverse the process. In 1879, Bouchardat prepared a synthetic mbbery product by treating isoprene with hydrochloric acid (2). It was not until 1954—1955 that methods were found to prepare a high i i -polyisoprene which dupHcates the stmcture of natural mbber. In one method (3,4) a Ziegler-type catalyst of tri alkyl aluminum and titanium tetrachloride was used to polymerize isoprene in an air-free, moisture-free hydrocarbon solvent to an all i7j -l,4-polyisoprene. A polyisoprene with 90% 1,4-units was synthesized with lithium catalysts as early as 1949 (5). [Pg.462]

The range of uses of mercuric iodide has increased because of its abiUty to detect nuclear particles. Various metals such as Pd, Cu, Al, Tri, Sn, Ag, and Ta affect the photoluminescence of Hgl2, which is of importance in the preparation of high quaUty photodetectors (qv). Hgl2 has also been mentioned as a catalyst in group transfer polymerization of methacrylates or acrylates (8). [Pg.113]

The free phosphine is Hberated upon the removal of the acid catalyst with water. Tri-/-butylphosphine [998-40-3] is prepared by the acid-cataly2ed addition of isobutene to phosphine. [Pg.379]

Manufacture and Processing Alkylphenols of commercial importance are generally manufactured by the reaction of an alkene with phenol in the presence of an acid catalyst. The alkenes used vary from single species, such as isobutylene, to compHcated mixtures, such as propylene tetramer (dodecene). The alkene reacts with phenol to produce mono alkylphenols, dialkylphenols, and tri alkylphenols. The mono alkylphenols comprise 85% of all alkylphenol production. [Pg.62]

The primary use for 2,4-di-/ f2 -butylphenol is in the production of substituted triaryl phosphites. 2,4-Di-/ f2 -butylphenol reacts with phosphoms trichloride typically using a trialkylamine or quaternary ammonium salt as the catalyst. Hydrogen chloride is formed and either complexed with the amine or Hberated as free hydrogen chloride gas forming the phosphite ester, tris(2,4-di-/ f2 -butylphenyl)phosphite [31570-04-4] (58). The phosphite-based on... [Pg.68]

Sulfur reacts with mercaptans ia the presences of basic catalysts at temperatures of 75—105°C, forming sulfides. These sulfides are usually light ia color and are formed without cross-linking. The sulfurization of mercaptans leads to di-, tri-, or higher polysulfides, depending on the mole ratio used (eqs. 5 and 6). An extensive Hst of references to the sulfurization of mercaptans is available (8). [Pg.206]

The route to 3-bromothiophene utilises a variation of the halogen dance technology (17). Preferably, 2,5-dibromothiophene [3141-27-3] is added to a solution of sodamide in thiophene containing the catalyst tris(2-(2-methoxyethoxy)ethyl)amine (l DA-1) (33) at temperatures marginally below reflux. On completion, quenching exothermically Hberates ammonia gas the organic phase is separated, washed, and distilled, and foremnning thiophene is recycled. Material of 97—98% purity is isolated. [Pg.21]


See other pages where Tris catalysts is mentioned: [Pg.447]    [Pg.447]    [Pg.312]    [Pg.30]    [Pg.249]    [Pg.80]    [Pg.327]    [Pg.349]    [Pg.126]    [Pg.147]    [Pg.220]    [Pg.229]    [Pg.481]    [Pg.521]    [Pg.112]    [Pg.60]    [Pg.67]    [Pg.88]    [Pg.232]    [Pg.477]    [Pg.335]    [Pg.335]    [Pg.185]    [Pg.328]    [Pg.208]    [Pg.467]    [Pg.100]    [Pg.399]    [Pg.73]    [Pg.135]    [Pg.154]    [Pg.6]   
See also in sourсe #XX -- [ Pg.476 , Pg.480 , Pg.492 ]




SEARCH



Phase transfer catalysts using tris amine

Phase-transfer catalysts Tris amine

Phosphites, tris co-catalyst

Rhodium, chloro tris catalyst

Sulfonium fluoride, tris catalyst

Sulfonium fluoride, tris catalyst allylsilane reactions with aldehydes

Tris Scandium Type Catalysts

Tris amine catalyst

Tris methane catalyst

Tris rhodium catalyst

Tris rhodium chloride hydrogenation catalyst

Wilkinsons catalyst tris rhodium

Wilkinson’s catalyst tris

© 2024 chempedia.info