Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Rhodium catalysts ligands

One of the most significant additions to the modern rhodium] ) catalyst ligand family was the development of the hybrid catalysts that combined the carboxamide bridging ligands with the enhanced reactivity of perfluoroalkyl substituents. In this series, rhodium] ) trifluoroacetamidate [Rh2]tfa)4] was the first described [30]. n addi-... [Pg.435]

Rhodium Ca.ta.lysts. Rhodium carbonyl catalysts for olefin hydroformylation are more active than cobalt carbonyls and can be appHed at lower temperatures and pressures (14). Rhodium hydrocarbonyl [75506-18-2] HRh(CO)4, results in lower -butyraldehyde [123-72-8] to isobutyraldehyde [78-84-2] ratios from propylene [115-07-17, C H, than does cobalt hydrocarbonyl, ie, 50/50 vs 80/20. Ligand-modified rhodium catalysts, HRh(CO)2L2 or HRh(CO)L2, afford /iso-ratios as high as 92/8 the ligand is generally a tertiary phosphine. The rhodium catalyst process was developed joindy by Union Carbide Chemicals, Johnson-Matthey, and Davy Powergas and has been Hcensed to several companies. It is particulady suited to propylene conversion to -butyraldehyde for 2-ethylhexanol production in that by-product isobutyraldehyde is minimized. [Pg.458]

Ligand-Modified Rhodium Process. The triphenylphosphine-modified rhodium oxo process, termed the LP Oxo process, is the industry standard for the hydroformylation of ethylene and propylene as of this writing (ca 1995). It employs a triphenylphosphine [603-35-0] (TPP) (1) modified rhodium catalyst. The process operates at low (0.7—3 MPa (100—450 psi)) pressures and low (80—120°C) temperatures. Suitable sources of rhodium are the alkanoate, 2,4-pentanedionate, or nitrate. A low (60—80 kPa (8.7—11.6 psi)) CO partial pressure and high (10—12%) TPP concentration are critical to obtaining a high (eg, 10 1) normal-to-branched aldehyde ratio. The process, first commercialized in 1976 by Union Carbide Corporation in Ponce, Puerto Rico, has been ficensed worldwide by Union Carbide Corporation and Davy Process Technology. [Pg.467]

Efficient enantioselective asymmetric hydrogenation of prochiral ketones and olefins has been accompHshed under mild reaction conditions at low (0.01— 0.001 mol %) catalyst concentrations using rhodium catalysts containing chiral ligands (140,141). Practical synthesis of several optically active natural... [Pg.180]

Conventional triorganophosphite ligands, such as triphenylphosphite, form highly active hydroformylation catalysts (95—99) however, they suffer from poor durabiUty because of decomposition. Diorganophosphite-modified rhodium catalysts (94,100,101), have overcome this stabiUty deficiency and provide a low pressure, rhodium catalyzed process for the hydroformylation of low reactivity olefins, thus making lower cost amyl alcohols from butenes readily accessible. The new diorganophosphite-modified rhodium catalysts increase hydroformylation rates by more than 100 times and provide selectivities not available with standard phosphine catalysts. For example, hydroformylation of 2-butene with l,l -biphenyl-2,2 -diyl... [Pg.374]

To date, these functionalized ligands have been investigated on the laboratory scale, in batch operations to immobilize rhodium catalyst in hydroformylation. [Pg.267]

In the presence of metal catalysts such as rhodium compounds, aldehydes can add directly to alkenes to form ketones. The reaction of co-alkenyl aldehydes with rhodium catalyst leads to cyclic ketones, with high enantioselectivity if chiral ligands are employed. Aldehydes also add to vinyl esters in the presence of hyponitrites and thioglycolates. ° ... [Pg.1038]

Hydroformylation of vinyl acetate to give mainly the branched product in >90% ee has been achieved using a rhodium catalyst containing binaphthol and phosphine ligands anchored to polystyrene. [Pg.119]

In the hydroformylation of lower alkenes using a modified cobalt catalyst complex separation is achieved by distillation. The ligands are high-boiling so that they remain with the heavy ends when these are removed from the alcohol product. Distillation is not possible when higher alcohols or aldehydes are produced, because of decomposition of the catalyst ligands at the higher temperatures required. Rhodium complexes can usually also be removed by distillation, since these complexes are relatively stable. [Pg.115]

The catalysts used in hydroformylation are typically organometallic complexes. Cobalt-based catalysts dominated hydroformylation until 1970s thereafter rhodium-based catalysts were commerciahzed. Synthesized aldehydes are typical intermediates for chemical industry [5]. A typical hydroformylation catalyst is modified with a ligand, e.g., tiiphenylphoshine. In recent years, a lot of effort has been put on the ligand chemistry in order to find new ligands for tailored processes [7-9]. In the present study, phosphine-based rhodium catalysts were used for hydroformylation of 1-butene. Despite intensive research on hydroformylation in the last 50 years, both the reaction mechanisms and kinetics are not in the most cases clear. Both associative and dissociative mechanisms have been proposed [5-6]. The discrepancies in mechanistic speculations have also led to a variety of rate equations for hydroformylation processes. [Pg.253]

An especially important case is the enantioselective hydrogenation of a-amidoacrylic acids, which leads to a-aminoacids.29 A particularly detailed study has been carried out on the mechanism of reduction of methyl Z-a-acetamidocinnamate by a rhodium catalyst with a chiral diphosphine ligand DIPAMP.30 It has been concluded that the reactant can bind reversibly to the catalyst to give either of two complexes. Addition of hydrogen at rhodium then leads to a reactive rhodium hydride and eventually to product. Interestingly, the addition of hydrogen occurs most rapidly in the minor isomeric complex, and the enantioselectivity is due to this kinetic preference. [Pg.380]

Several chiral ligands have been developed for use with the rhodium catalysts, among them are pyrrolidinones and imidazolidinones.207 For example, the lactamate of pyroglutamic acid gives enantioselective cyclopropanation reactions. [Pg.931]

Arylation of alkynes via addition of arylboronic acids to alkynes represents an attractive strategy in organic synthesis. The first addition of arylboronic acids to alkynes in aqueous media catalyzed by rhodium was reported by Hayashi et al.89 They found that rhodium catalysts associated with chelating bisphosphine ligands, such as 1,4-Ws(diphenyl-phosphino)butane (dppb) and 1,1 -/ E(diphenylphospliino)fcrroccnc... [Pg.123]

Wender et al. reported a [5+2] cycloaddition in water by using a water-soluble rhodium catalyst having a bidentate phosphine ligand to give a 7-membered ring product (Eq. 4.69). This water-soluble catalyst was reused eight times without any significant loss in catalytic activity.133... [Pg.138]

In 1968 Wilkinson discovered that phosphine-modified rhodium complexes display a significantly higher activity and chemoselectivity compared to the first generation cobalt catalyst [29]. Since this time ligand modification of the rhodium catalyst system has been the method of choice in order to influence catalyst activity and selectivity [10]. [Pg.148]

Switching the roles of the zinc porphyrin template and N-donor adapter provides an alternative mode for the supramolecular construction of biden-tate ligands (Scheme 32). Complex 26 derived from mixing three equivalents of template 24 with two equivalents of monodentate phosphite ligands 23 furnished a rhodium catalyst which displayed good regioselectivity toward... [Pg.173]

Ligand self-assembly through coordinative bonding has been used to increase the bulkiness of a monodentate tris-3-pyridyl phosphine ligand employing the zinc porphyrin/pyridine interaction (Scheme 33) [95-97]. The corresponding rhodium catalyst allowed for regioselective hydroformylation of2-octene [95]. [Pg.174]

Platinum complexes with chiral phosphorus ligands have been extensively used in asymmetric hydroformylation. In most cases, styrene has been used as the substrate to evaluate the efficiency of the catalyst systems. In addition, styrere was of interest as a model intermediate in the synthesis of arylpropionic acids, a family of anti-inflammatory drugs.308,309 Until 1993 the best enantio-selectivities in asymmetric hydroformylation were provided by platinum complexes, although the activities and regioselectivities were, in many cases, far from the obtained for rhodium catalysts. A report on asymmetric carbonylation was published in 1993.310 Two reviews dedicated to asymmetric hydroformylation, which appeared in 1995, include the most important studies and results on platinum-catalogued asymmetric hydroformylation.80,81 A report appeared in 1999 about hydrocarbonylation of carbon-carbon double bonds catalyzed by Ptn complexes, including a proposal for a mechanism for this process.311... [Pg.166]


See other pages where Rhodium catalysts ligands is mentioned: [Pg.2]    [Pg.465]    [Pg.469]    [Pg.469]    [Pg.471]    [Pg.180]    [Pg.73]    [Pg.522]    [Pg.1134]    [Pg.242]    [Pg.230]    [Pg.164]    [Pg.115]    [Pg.106]    [Pg.5]    [Pg.293]    [Pg.924]    [Pg.261]    [Pg.95]    [Pg.153]    [Pg.459]    [Pg.459]    [Pg.460]    [Pg.461]    [Pg.91]    [Pg.103]    [Pg.149]    [Pg.160]    [Pg.160]    [Pg.162]    [Pg.164]    [Pg.172]   


SEARCH



Catalyst ligand

IR studies on Ligand-free Rhodium Carbonyl Catalysts

Rhodium Hydroformylation Catalysts with Bidentate Ligands

Rhodium carbonyl catalyst, ligand-free

Rhodium catalysts catalyst

Rhodium catalysts phosphine-phosphite ligands

Rhodium ligand

Rhodium ligand-modified catalysts

© 2024 chempedia.info