Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Rheological properties shearing

Rheological Properties shear strength, viscosity Structure polarity Thermal Properties... [Pg.35]

One of the main challenges for the underlying numerical methods are that the present phases (or at least one of them) experience non-Newtonian rheological properties (shear dependent or even viscoelastic) and that the position of the... [Pg.494]

Rheology. The rheology of foam is striking it simultaneously shares the hallmark rheological properties of soHds, Hquids, and gases. Like an ordinary soHd, foams have a finite shear modulus and respond elastically to a small shear stress. However, if the appHed stress is increased beyond the yield stress, the foam flows like a viscous Hquid. In addition, because they contain a large volume fraction of gas, foams are quite compressible, like gases. Thus foams defy classification as soHd, Hquid, or vapor, and their mechanical response to external forces can be very complex. [Pg.430]

Solutions of rhamsan have high viscosity at low shear rates and low gum concentrations (90). The rheological properties and suspension capabiUty combined with excellent salt compatibihty, make it useful for several industrial apphcations including agricultural fertilizer suspensions, pigment suspensions, cleaners, and paints and coatings. [Pg.437]

The process of flushing typically consists of the foUowing sequence phase transfer separation of aqueous phase vacuum dehydration of water trapped in the dispersed phase dispersion of the pigment in the oil phase by continued appHcation of shear thinning the heavy mass by addition of one or more vehicles to reduce the viscosity of dispersion and standardization of the finished dispersion to adjust the color and rheological properties to match the quaHty to the previously estabHshed standard. [Pg.511]

Kalyan et al. [56] have also studied the effect of alpha-olefin comonomers on the rheological properties and processing of LLDPE. The characteristics of the resins are shown in Table 2. It is found that 1-octene-based LLDPE has the lowest shear viscosity as compared to 1-butene- and 1-hexene-based polymers (Fig. 9). Decrease in power consumption, pressure before the die, temperature in the die, and increase in output has also been found according to shear viscosities of the polymers during tubular film extrusion. [Pg.281]

The existence of yield stress Y at shear strains seems to be the most typical feature of rheological properties of highly filled polymers. A formal meaing of this term is quite obvious. It means that at stresses lower than Y the material behaves like a solid, i.e. it deforms only elastically, while at stresses higher than Y, like a liquid, i.e. it can flow. At a first approximation it may be assumed that the material is not deformed at all, if stresses are lower than Y. In this sense, filled polymers behave as visco-plastic media with a low-molecular and low-viscosity dispersion medium. This analogy is not random as will be stressed below when the values of the yield stress are compared for the systems with different dispersion media. The existence of yield stress in its physical meaning must be correlated with the strength of a structure formed by the interaction between the particles of a filler. [Pg.71]

The fact that the appearance of a wall slip at sufficiently high shear rates is a property inwardly inherent in filled polymers or an external manifestation of these properties may be discussed, but obviously, the role of this effect during the flow of compositions with a disperse filler is great. The wall slip, beginning in the region of high shear rates, was marked many times as the effect that must be taken into account in the analysis of rheological properties of filled polymer melts [24, 25], and the appearance of a slip is initiated in the entry (transitional) zone of the channel [26]. It is quite possible that in reality not a true wall slip takes place, but the formation of a low-viscosity wall layer depleted of a filler. This is most characteristic for the systems with low-viscosity binders. From the point of view of hydrodynamics, an exact mechanism of motion of a material near the wall is immaterial, since in any case it appears as a wall slip. [Pg.87]

For the purposes of constant consideration the most significant is the circumstance that all these data on the whole give the information which is equivalent or close to that obtained during measurements of rheological properties under the conditions of shear flow. Therefore a method of investigation here is determined by the taste of the experimenter and measuring technique available. [Pg.95]

The rheological properties of a particular suspension may be approximated reasonably well by either a power-law or a Bingham-plastic model over the shear rate range of 10 to 50 s. If the consistency coefficient k is 10 N s, /m-2 and the flow behaviour index n is 0.2 in the power law model, what will be the approximate values of the yield stress and of the plastic viscosity in the Bingham-plastic model ... [Pg.127]

Equation 3.152 provides a method of determining the relationship between pressure gradient and mean velocity of flow in a pipe for fluids whose rheological properties may be expressed in the form of an explicit relation for shear rate as a function of shear stress. [Pg.134]

Optical and electro-optical behavior of side-chain liquid crystalline polymers are described 350-351>. The effect of flexible siloxane spacers on the phase properties and electric field effects were determined. Rheological properties of siloxane containing liquid crystalline side-chain polymers were studied as a function of shear rate and temperature 352). The effect of cooling rate on the alignment of a siloxane based side-chain liquid crystalline copolymer was investigated 353). It was shown that the dielectric relaxation behavior of the polymers varied in a systematic manner with the rate at which the material was cooled from its isotropic phase. [Pg.49]

Interfacial rheologic properties of different crude oil-water systems were determined in wide temperature and shear rate ranges and in the presence of inorganic electrolytes, surfactants, alkaline materials, and polymers [1056]. [Pg.224]

Caustic Waterflooding. In caustic waterflooding, the interfacial rheologic properties of a model crude oil-water system were studied in the presence of sodium hydroxide. The interfacial viscosity, the non-Newtonian flow behavior, and the activation energy of viscous flow were determined as a function of shear rate, alkali concentration, and aging time. The interfacial viscosity drastically... [Pg.224]

Taking into account the relevance of the range of semi-dilute solutions (in which intermolecular interactions and entanglements are of increasing importance) for industrial applications, a more detailed picture of the interrelationships between the solution structure and the rheological properties of these solutions was needed. The nature of entanglements at concentrations above the critical value c leads to the viscoelastic properties observable in shear flow experiments. The viscous part of the flow behaviour of a polymer in solution is usually represented by the zero-shear viscosity, rj0, which depends on the con-... [Pg.13]


See other pages where Rheological properties shearing is mentioned: [Pg.7]    [Pg.30]    [Pg.347]    [Pg.343]    [Pg.7]    [Pg.30]    [Pg.347]    [Pg.343]    [Pg.2672]    [Pg.2743]    [Pg.430]    [Pg.431]    [Pg.175]    [Pg.178]    [Pg.512]    [Pg.281]    [Pg.421]    [Pg.443]    [Pg.189]    [Pg.303]    [Pg.352]    [Pg.233]    [Pg.265]    [Pg.1851]    [Pg.692]    [Pg.746]    [Pg.281]    [Pg.587]    [Pg.88]    [Pg.31]    [Pg.276]    [Pg.43]    [Pg.2]    [Pg.85]    [Pg.521]    [Pg.583]    [Pg.281]    [Pg.184]    [Pg.383]   
See also in sourсe #XX -- [ Pg.183 , Pg.184 , Pg.185 , Pg.186 , Pg.187 , Pg.188 , Pg.189 , Pg.190 , Pg.202 ]




SEARCH



Rheological properties

Rheological properties rheology

Rheology properties

Shear properties

© 2024 chempedia.info