Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reversible toluene

N2 SAMPLE REVERSE -TOLUENE WASH -H1-N2 -PENTANE WASH... [Pg.140]

An example of where recycling can be effective in improving selectivity is in the production of benzene from toluene. The series reaction is reversible. Hence recycling diphenyl to the reactor can be used to suppress its formation at the source. [Pg.39]

Interfdci l Composite Membra.nes, A method of making asymmetric membranes involving interfacial polymerization was developed in the 1960s. This technique was used to produce reverse osmosis membranes with dramatically improved salt rejections and water fluxes compared to those prepared by the Loeb-Sourirajan process (28). In the interfacial polymerization method, an aqueous solution of a reactive prepolymer, such as polyamine, is first deposited in the pores of a microporous support membrane, typically a polysulfone ultrafUtration membrane. The amine-loaded support is then immersed in a water-immiscible solvent solution containing a reactant, for example, a diacid chloride in hexane. The amine and acid chloride then react at the interface of the two solutions to form a densely cross-linked, extremely thin membrane layer. This preparation method is shown schematically in Figure 15. The first membrane made was based on polyethylenimine cross-linked with toluene-2,4-diisocyanate (28). The process was later refined at FilmTec Corporation (29,30) and at UOP (31) in the United States, and at Nitto (32) in Japan. [Pg.68]

Molecular bromine is believed to be the reactive brominating agent in uncatalyzed brominations. The brominations of benzene and toluene are first-order in both bromine and the aromatic substrate in trifluoroacetic acid solution, but the rate expressions become more complicated when these reactions take place in the presence of water. " The bromination of benzene in aqueous acetic acid exhibits a first-order dependence on bromine concentration when bromide ion is present. The observed rate is dependent on bromide ion concentration, decreasing with increasing bromide ion concentration. The detailed kinetics are consistent with a rate-determining formation of the n-complex when bromide ion concentration is low, but with a shift to reversible formation of the n-complex... [Pg.577]

In certain cases, even dimers of certain isocyanates, such as toluene diisocyanate or hexamethylene diisocyanate, can act as blocking agents, thermally reversing to regenerate the isocyanate [16,17]. [Pg.766]

FIGURE l.l Hydrophobic interaction and reversed-phase chromatography (HIC-RPC). Two-dimensional separation of proteins and alkylbenzenes in consecutive HIC and RPC modes. Column 100 X 8 mm i.d. HIC mobile phase, gradient decreasing from 1.7 to 0 mol/liter ammonium sulfate in 0.02 mol/liter phosphate buffer solution (pH 7) in 15 min. RPC mobile phase, 0.02 mol/liter phosphate buffer solution (pH 7) acetonitrile (65 35 vol/vol) flow rate, I ml/min UV detection 254 nm. Peaks (I) cytochrome c, (2) ribonuclease A, (3) conalbumin, (4) lysozyme, (5) soybean trypsin inhibitor, (6) benzene, (7) toluene, (8) ethylbenzene, (9) propylbenzene, (10) butylbenzene, and (II) amylbenzene. [Reprinted from J. M. J. Frechet (1996). Pore-size specific modification as an approach to a separation media for single-column, two-dimensional HPLC, Am. Lab. 28, 18, p. 31. Copyright 1996 by International Scientific Communications, Inc.. Shelton, CT.]... [Pg.12]

Bu2SnO, toluene, reflux TsCl, CHCI3, 36-99% yield. The primary alcohol of a 1,2-diol is selectively tosylated, but when hexamethylenestannylene acetals are used, selectivity is reversed and the secondary diol is preferentially tosylated. [Pg.199]

Reduction of fullerenes to fullerides — Reversible electrochemical reduction of Ceo in anhydrous dimethylformamide/toluene mixtures at low temperatures leads to the air-sensitive coloured anions Qo" , ( = 1-6). The successive mid-point reduction potentials, 1/2, at -60°C are -0.82, -1.26, -1.82, -2.33, —2.89 and —3.34 V, respectively. Liquid NH3 solutions can also be used. " Ceo is thus a very strong oxidizing agent, its first reduction potential being at least 1 V more positive than those of polycyclic aromatic hydrocarbons. C70 can also be reversibly reduced and various ions up to... [Pg.285]

The structure of the products were characterized by two detector gel-chromatography (recractometer and UV). The direction of the alkylation reaction of toluene with EC was changed depending on the reaction condition as follows if the ratio of toluene-EC is 1 5 mol, the alkylation reaction is toward obtaining the PEC at 273 K and if the ratio is reverse at 333 K, the reaction undergone to obtain epoxy toluene oligomer is shown in Fig. 1. [Pg.264]

The catalytic disproportionation of toluene (Figure 10-13) in the presence of hydrogen produces henzene and a xylene mixture. Disproportionation is an equilihrium reaction with a 58% conversion per pass theoretically possible. The reverse reaction is the transalkylation of xylenes with henzene ... [Pg.285]

Similar additions may be performed with the enamine 13. However, with 3-buten-2-one or methyl 2-propenoate Lewis acid catalysis is needed to activate the Michael acceptor chloro-trimethylsilane proved to be best suited for this purpose. A remarkable solvent effect is seen in these reactions. A change from THF to HMPA/toluene (1 1) results in a reversal of the absolute configuration of the product 14, presumably due to a ligand effect of HMPA235. [Pg.985]

Isopropoxycarbonyloxy radicals undergo facile reaction with aromatic substrates (e.g. toluene) by reversible aromatic substitution. 94 Isopropoxycarbonyloxy radicals react with S to give ring substitution (ca 1%) as well as the expected double bond addition.40 ... [Pg.128]

Subsequently, rate coefficients were determined for the zinc chloride-catalysed bromination of benzene, toluene, i-propyl-benzene, r-butylbenzene, xylenes, p-di-f-butylbenzene, mesitylene, 1,2,4-trimethyl-, sym-triethyl-, sym-tri-f-butyl-, 1,2,3,5-and 1,2,4,5-tetramethyl- and pentamethylbenzenes, all at 25.4 °C and in acetic acid, and it was shown that the reaction was inhibited by HBr.ZnCl2 which accumulates during the bromination and was considered to cause the first step of the reaction (formation of ArHBr2) to reverse320. The second-order coefficients for bromination of o-xylene at 25.0 °C were shown to be inversely dependent upon the hydrogen bromide concentration and the reversal of equilibrium (155)... [Pg.133]

Olivier and Berger335, who measured the first-order rate coefficients for the aluminium chloride-catalysed reaction of 4-nitroben2yl chloride with excess aromatic (solvent) at 30 °C and obtained the rate coefficients (lO5/ ) PhCI, 1.40 PhH, 7.50 PhMe, 17.5. These results demonstrated the electrophilic nature of the reaction and also the unselective nature of the electrophile which has been confirmed many times since. That the electrophile in these reactions is not the simple and intuitively expected free carbonium ion was indicated by the observation by Calloway that the reactivity of alkyl halides was in the order RF > RC1 > RBr > RI, which is the reverse of that for acylation by acyl halides336. The low selectivity (and high steric hindrance) of the reaction was further demonstrated by Condon337 who measured the relative rates at 40 °C, by the competition method, of isopropylation of toluene and isopropylbenzene with propene catalyzed by boron trifluoride etherate (or aluminium chloride) these were as follows PhMe, 2.09 (1.10) PhEt, 1.73 (1.81) Ph-iPr, (1.69) Ph-tBu, 1.23 (1.40). The isomer distribution in the reactions337,338 yielded partial rate factors of 2.37 /mMe, 1.80 /pMe, 4.72 /, 0.35 / , 2.2 / Pr, 2.55337 339. [Pg.140]

For larger 6 values, tbe results for toluene can be read ofif at once from those for pyridine (Table I) reversing the sign of the 3 s in a given secular equation of the present type merely reverses the direction of the induced polarization, and leaves its magnitude unchanged. [Pg.198]

The regioselectivity under supercritical conditions at different pressures varied little from that found in toluene solution in particular, no reversal in regioselectivity was found in SC-CO2 near the critical pressure [88]. [Pg.288]

Using an electron-gun source, tungsten atoms were reacted with benzene, toluene, or mesitylene at 77 K, to form the expected (arene)2W complex (42) in a yield of 30%, compared with the —2% yield from the previously published, bis(benzene)W synthesis (32). These arene complexes are reversibly protonated, to give the appropriate [(T7-arene)2WH] species. By using the same technique, the analogous, niobium complexes were isolated (43). [Pg.148]

The nicotinic acetylcholine (nACh) receptor also displays sensitivity to inhalants (Bale et al. 2002). To varying degrees, toluene appeared to antagonize the function of nACh receptors that comprise different subunits. At concentrations of 50 pM to 10 mM, toluene produced a reversible, concentration-dependent inhibition of acetylcholine-induced current in Xenopus oocytes expressing various nicotinic receptor subtypes, with the ol — 2 d ct3—P2 subunit combinations being more sensitive to inhibition than other receptor... [Pg.284]

Similar to alcohol (Lovinger and White 1991) and volatile anesthetics (Machu and Harris 1994), trichoroethane, trichloroethylene, and toluene enhance 5-HT3 receptor function. All three inhalants significantly and reversibly potentiated, in a dose-dependent manner, 5-HT-activated currents, mediated by mouse 5-HT3 receptors expressed in Xenopus oocytes. Another feature common to these drugs is that the acute use of inhalants, as well as alcohol and volatile anesthetics, can produce nausea and vomiting (Meredith et al. 1989). It is believed that 5-HT3 receptors located in the area postrema mediate this action of alcohol and the volatile anesthetics (Aapro 1991). [Pg.285]


See other pages where Reversible toluene is mentioned: [Pg.644]    [Pg.644]    [Pg.38]    [Pg.424]    [Pg.432]    [Pg.146]    [Pg.1248]    [Pg.225]    [Pg.13]    [Pg.51]    [Pg.127]    [Pg.174]    [Pg.195]    [Pg.388]    [Pg.10]    [Pg.56]    [Pg.281]    [Pg.48]    [Pg.172]    [Pg.62]    [Pg.72]    [Pg.73]    [Pg.142]    [Pg.172]    [Pg.350]    [Pg.353]    [Pg.678]    [Pg.83]    [Pg.94]    [Pg.103]    [Pg.62]    [Pg.282]    [Pg.292]   
See also in sourсe #XX -- [ Pg.1501 ]




SEARCH



Reverse osmosis toluene-water

© 2024 chempedia.info