Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Rhodium , resolution

Resolution, analysis complicated by insufficient, 201 of x-rays, 61, 113-115 Response time of multiplier phototube, 57 Rhenium, determination by x-ray emission spectrography, 328 Rhodium, determination by x-ray emission spectrography, 328 Risk, consumer, 215 producer, 215... [Pg.351]

Reduction, carboxyl groups, 56,83 Reduction of a,0-unsaturated p-toluene-sulfonyl-hydrazones to alkenes, 59,42 Reductive alkylation, 56,52 Reductive cleavage, 56, 101 Resolution of amines, 55,80, 83 Rexyn 201,55,4 Rhodium(III) oxide, 57, 1 Ring contraction, 56, 107 Ring expansion of cycloalkanones to cycloalkenones, 59, 113... [Pg.121]

The ability of enzymes to achieve the selective esterification of one enantiomer of an alcohol over the other has been exploited by coupling this process with the in situ metal-catalysed racemisation of the unreactive enantiomer. Marr and co-workers have used the rhodium and iridium NHC complexes 44 and 45 to racemise the unreacted enantiomer of substrate 7 [17]. In combination with a lipase enzyme (Novozyme 435), excellent enantioselectivities were obtained in the acetylation of alcohol 7 to give the ester product 43 (Scheme 11.11). A related dynamic kinetic resolution has been reported by Corberdn and Peris [18]. hi their chemistry, the aldehyde 46 is readily racemised and the iridium NHC catalyst 35 catalyses the reversible reduction of aldehyde 46 to give an alcohol which is acylated by an enzyme to give the ester 47 in reasonable enantiomeric excess. [Pg.258]

The emission spectmm of Co, as recorded with an ideal detector with energy-independent efficiency and constant resolution (line width), is shown in Fig. 3.6b. In addition to the expected three y-lines of Fe at 14.4, 122, and 136 keV, there is also a strong X-ray line at 6.4 keV. This is due to an after-effect of K-capture, arising from electron-hole recombination in the K-shell of the atom. The spontaneous transition of an L-electron filling up the hole in the K-shell yields Fe-X X-radiation. However, in a practical Mossbauer experiment, this and other soft X-rays rarely reach the y-detector because of the strong mass absorption in the Mossbauer sample. On the other hand, the sample itself may also emit substantial X-ray fluorescence (XRF) radiation, resulting from photo absorption of y-rays (not shown here). Another X-ray line is expected to appear in the y-spectrum due to XRF of the carrier material of the source. For rhodium metal, which is commonly used as the source matrix for Co, the corresponding line is found at 22 keV. [Pg.35]

A complex naturally occurring amino acid 5-hydroxypiperazic acid (5HyPip) 100 was prepared by a multistep procedure that included Diels-Alder addition of 2,4-pentadienoic acid to phthalazinedione 83a as a first step (Scheme 24). Adduct 97 was esterified and oxidized with mercuric acetate to 98, which on hydrogenation over rhodium on alumina and subsequent hydrolysis provided a mixture of enantiomers from which the required enantiomer 99 was obtained by resolution with quinine. Its hydrazinolysis provided 100 [71JCS(C)514 77H119],... [Pg.160]

The reaction of aryldiazoacetates with cyclohexene is a good example of the influence of steric effects on the chemistry of the donor/acceptor-substituted rhodium carbenoids. The Rh2(reaction with cyclohexene resulted in the formation of a mixture of the cyclopropane and the G-H insertion products. The enantios-electivity of the C-H insertion was high but the diastereoselectivity was very low (Equation (31)). 0 In contrast, the introduction of a silyl group on the cyclohexene, as in 15, totally blocked the cyclopropanation, and, furthermore, added sufficient size differentiation between the two substituents at the methylene site to make the reaction to form 16 proceed with high diastereoselectivity (Equation (32)).90 The allylic C-H insertion is applicable to a wide array of cyclic and acyclic substrates, and even systems capable of achieving high levels of kinetic resolution are known.90... [Pg.177]

Recently, Krische and co-workers developed an effective protocol for the catalytic desymmetrization and parallel kinetic resolution of enone-diones via tandem conjugate addition-aldol cyclization (Scheme 66).150 This transformation, involving enantioselective rhodium-catalyzed conjugate addition methodology, enabled the formation of two C-G bonds and four contiguous stereogenic centers from simple precursors with high diastereo- and enantiocontrol. [Pg.396]

In the hydrogenation of 3-substituted itaconate ester derivatives by rhodium-dipamp, the alkoxycarbonyl group at the stereogenic center also exerts a powerful directing effect, comparable to that induced by OH in the kinetic resolution of (a-hydroxyethyl)acrylate, leading to a high enantiomer-discriminating ability up to feR fes = 16 1 (Table 21.18, entry 5) [64]. [Pg.694]

Field emission microscopy was the first technique capable of imaging surfaces at resolution close to atomic dimensions. The pioneer in this area was E.W. Muller, who published the field emission microscope in 1936 and later the field ion microscope in 1951 [23]. Both techniques are limited to sharp tips of high melting metals (tungsten, rhenium, rhodium, iridium, and platinum), but have been extremely useful in exploring and understanding the properties of metal surfaces. We mention the structure of clean metal surfaces, defects, order/disorder phenomena,... [Pg.191]

Figure 8.14 High-resolution electron energy loss spectroscopy (HREELS) and low-energy electron diffraction of CO adsorbed on a Rh(l 11) surface, along with structure models. The HREELS spectra show the C-O and metal-CO stretch vibrations of linear and threefold CO on rhodium (from R.Linke etal. [56]). Figure 8.14 High-resolution electron energy loss spectroscopy (HREELS) and low-energy electron diffraction of CO adsorbed on a Rh(l 11) surface, along with structure models. The HREELS spectra show the C-O and metal-CO stretch vibrations of linear and threefold CO on rhodium (from R.Linke etal. [56]).
The related chiral rhodium catalyst 4 has been used to effect kinetic resolution of these substrates.2 In this catalyst the achiral phosphine ligand of 1 is replaced by (R,R)-l,2-bis(o-anisylphenylphosphino)ethane (DIPAMP). Hydrogenation cat-... [Pg.44]

A resolution of racemic CHIRAPHOS ligand has been achieved using a chiral iridium amide complex (Scheme 8.3). The chiral iridium complex (- -)-l reacts selectively with (S.S -CHIRAPHOS to form the inactive iridium complex 2. The remaining (R,R)-CHIRAPHOS affords the catalytically active chiral rhodium complex 3. The system catalyzes asymmetric hydrogenation to give the (5)-product with 87% ee. The opposite enantiomer (—)-l gives the (R)-product with 89.5% ee, which is almost the same level of enantioselectivity obtained by using optically pure (5,5)-CHlRAPHOS. [Pg.223]

Haegele et al. (269) have used exact isotope masses and isotope abundances together in determining the detailed fragmentation patterns of square planar rhodium (I) -diketonate complexes. They found that some species postulated by other workers were in error. High resolution is needed to distinguish the 28 mass units for loss of CO (27.9949) from C2H4 (28.0313) (269) or the 69 mass units for PF2 (68.9906) from CFa (68.9952) (90). [Pg.270]

The power of the rhodium(I)-catalyzed Alder-ene reaction is shown by a highly enan-tioselective kinetic resolution process [35]. The key result stems from an observation that a racemic mixture of 48, when treated with [Rh(COD)Cl]2 and ( )-BINAP, af forded roc49 (2i ,3S and 2S,3R, and not 2R,iR and 2S,3S Eq. (16). [Pg.168]

The kinetic resolution was systematically studied by using diastereomerically pure en-ynes and an enantiomerically pure rhodium(I) catalyst (Scheme 8.9). Each product was obtained in high yield ( 100% for the reacted 51-i-unreacted 50) and high enantiomeric purity. Furthermore, these results were validated by subjecting each enantiomer... [Pg.168]

After the resolution of 1-2-chloro-ammino-diethylenediamino-cobaltie chloride many analogous resolutions of optically active compounds of octahedral symmetry were carried out, and active isomers of substances containing central cobalt, chromium, platinum, rhodium, iron atoms are known. The asymmetry is not confined to ammines alone, but is found in salts of complex type for example, potassium tri-oxalato-chromium, [Cr(Ca04)3]K3, exists in two optically active forms. These forms were separated by Werner2 by means of the base strychnine. More than forty series of compounds possessing octahedral symmetry have been proved to exist in optically active forms, so that the spatial configuration for co-ordination number six is firmly established. [Pg.26]


See other pages where Rhodium , resolution is mentioned: [Pg.961]    [Pg.961]    [Pg.179]    [Pg.92]    [Pg.26]    [Pg.27]    [Pg.283]    [Pg.165]    [Pg.682]    [Pg.462]    [Pg.83]    [Pg.1122]    [Pg.532]    [Pg.4]    [Pg.855]    [Pg.692]    [Pg.698]    [Pg.814]    [Pg.200]    [Pg.207]    [Pg.61]    [Pg.44]    [Pg.89]    [Pg.187]    [Pg.206]    [Pg.296]    [Pg.203]    [Pg.83]    [Pg.126]    [Pg.98]    [Pg.163]   


SEARCH



Resolution Rhodium complexes

Rhodium complexes, cation resolution

Rhodium optical resolution

Rhodium with optical resolution

© 2024 chempedia.info