Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Resins, peptide synthesis

To illustrate the specific operations involved, the scheme below shows the first steps and the final detachment reaction of a peptide synthesis starting from the carboxyl terminal. N-Boc-glycine is attached to chloromethylated styrene-divinylbenzene copolymer resin. This polymer swells in organic solvents but is completely insoluble. ) Treatment with HCl in acetic acid removes the fert-butoxycarbonyl (Boc) group as isobutene and carbon dioxide. The resulting amine hydrochloride is neutralized with triethylamine in DMF. [Pg.232]

The major disadvantage of solid-phase peptide synthesis is the fact that ail the by-products attached to the resin can only be removed at the final stages of synthesis. Another problem is the relatively low local concentration of peptide which can be obtained on the polymer, and this limits the turnover of all other educts. Preparation of large quantities (> 1 g) is therefore difficult. Thirdly, the racemization-safe methods for acid activation, e.g. with azides, are too mild (= slow) for solid-phase synthesis. For these reasons the convenient Menifield procedures are quite generally used for syntheses of small peptides, whereas for larger polypeptides many research groups adhere to classic solution methods and purification after each condensation step (F.M. Finn, 1976). [Pg.237]

FIGURE 27 14 A section of polystyrene showing one of the benzene rings modified by chloromethylation Indi vidual polystyrene chains in the resin used in solid phase peptide synthesis are con nected to one another at various points (cross linked) by adding a small amount of p divinylbenzene to the styrene monomer The chloromethylation step is carried out under conditions such that only about 10% of the benzene rings bear —CH2CI groups... [Pg.1142]

Polypeptide Synthesis and Analysis. Sihca or controUed-pore glass supports treated with (chloromethyl)phenylethyltrimethoxysilane [68128-25-6] or its derivatives are replacing chloromethylated styrene—divinylbenzene (Merrifield resin) as supports in polypeptide synthesis. The sdylated support reacts with the triethyl ammonium salt of a protected amino acid. Once the initial amino acid residue has been coupled to the support, a variety of peptide synthesis methods can be used (34). At the completion of synthesis, the anchored peptide is separated from the support with hydrogen bromide in acetic acid (see Protein engineering Proteins). [Pg.73]

Nearly all of the benzyl chloride [100-44-7], henzal chloride [98-87-3], and hen zotrichl oride /P< -(97-i manufactured is converted to other chemical intermediates or products by reactions involving the chlorine substituents of the side chain. Each of the compounds has a single primary use that consumes a large portion of the compound produced. Benzyl chloride is utilized in the manufacture of benzyl butyl phthalate, a vinyl resin plasticizer benzal chloride is hydrolyzed to benzaldehyde hen zotrichl oride is converted to benzoyl chloride. Benzyl chloride is also hydrolyzed to benzyl alcohol, which is used in the photographic industry, in perfumes (as esters), and in peptide synthesis by conversion to benzyl chloroformate [501-53-1] (see Benzyl ALCOHOL AND p-PHENETHYL ALCOHOL CARBONIC AND CARBONOCm ORIDIC ESTERS). [Pg.58]

The structures of these ylide polymers were determined and confirmed by IR and NMR spectra. These were the first stable sulfonium ylide polymers reported in the literature. They are very important for such industrial uses as ion-exchange resins, polymer supports, peptide synthesis, polymeric reagent, and polyelectrolytes. Also in 1977, Hass and Moreau [60] found that when poly(4-vinylpyridine) was quaternized with bromomalonamide, two polymeric quaternary salts resulted. These polyelectrolyte products were subjected to thermal decyana-tion at 7200°C to give isocyanic acid or its isomer, cyanic acid. The addition of base to the solution of polyelectro-lyte in water gave a yellow polymeric ylide. [Pg.378]

The chloromethylated polystyrene resin used for Merrifteld solid-phase peptide synthesis is prepared by treatment of polystyrene with chloromethyl methyl ether and a Lewis acid catalyst. Propose a mechanism for the reaction. [Pg.1055]

The polymeric resin used for Merrifield solid-phase peptide synthesis (Section 26.8) is prepared by treating polystyrene with iV-(hydroxymethyl) phthalimide and trifluoromethanesulfonic acid, followed by reaction with hydrazine. Propose a mechanism for both steps. [Pg.1224]

Palmitic acid, structure of, 1062 Palmitoleic acid, structure of, 1062 PAM resin, solid-phase peptide synthesis and, 1037 Para (m), 519 Paraffin, 91 Parallel synthesis, 586 Parent peak (mass spectrum), 410 Partial charge, 36 Pasteur, Louis, 297, 307... [Pg.1310]

Solid-phase peptide synthesis. 1036-1038 PAM resin in. 1037 Wang resin in, 1037 Solvation, 370... [Pg.1315]

Walden, Paul, 360 Walden inversion. 359-360 Wang resin, solid-phase peptide synthesis and. 1037 Water, acid-base behavior of, 50 dipole moment of, 39 electrostatic potential map of. 53 nucleophilic addition reactions of, 705-706 pKaof, 51-52... [Pg.1318]

Solid-phase chemistry is an efficient synthetic tool that, compared with solution-phase chemistry, simplifies the work-up of the reaction, allows the process to be driven to completion by using excess of reagents, and can be automatized [2a]. In recent years, many studies have been devoted to developing both surface-mediated and resin-supported synthesis. Today the solid-phase approach is not limited to peptides and oligonucleotides but is also used to synthesize molecules of lower molecular weight. [Pg.143]

Carvalho, R. S. H., Tersariol, I. L. S., Nader, H., and Nakaie, C. R., First purification of heparan sulfate disaccharides with an amine resin used as solid support for peptide synthesis, Anal. Chim. Acta, 403, 205, 2000. [Pg.312]

DMAP has been found to improve the coupling reaction in solid phase peptide synthesis (4). Polypeptides synthesized via the DMAP-DCC method were found to be of higher purity compared to other methods of synthesis. In polymer chemistry, DMAP has been used for hardening of resins and in the synthesis of polyurethanes, (5) polycarbonates, (6) and polyphenyleneoxides (7) ... [Pg.73]

A second strategy is to attach a linker (also referred to as a handle or anchor) to the resin followed by assembly of the molecule. A linker is bifunctional spacer that serves to link the initial synthetic unit to the support in two discrete steps (Fig. 3). To attach a linker to a chloromethyl-PS resin, a phenol functionality such as handle 4 is used to form an ether bond (Fig. 4). To attach the same handle to an amino-functionalized support, acetoxy function 5 or a longer methylene spacer of the corresponding phenol is applied to form an amide bond. Both of these resins perform similarly and only differ in their initial starting resin [4], An alternative approach is to prepare a preformed handle in which the first building block is prederivatized to the linker and this moiety is attached to the resin. For peptide synthesis, this practice is common for the preparation of C-terminal peptide acids in order to reduce the amount of racemization of the a-carbon at the anchoring position [5],... [Pg.183]

Redox-sensitive resin 24 designed for solid-phase peptide synthesis (SPPS) [29] was prepared from commercially available 2,5-dimethylben-zoquinone in seven steps [30] and loaded to a support via a Wittig reaction. Release of the peptide occurs using two sequential mild conditions, reduction with NaBH4 followed by TBAF-catalyzed cyclic ether formation (Scheme 8) which provide orthogonality to acid sensitive reactions. [Pg.189]

Mitchell AR, Kent SBH, Engelhard M, Merrifield R. A new synthetic route to tert-butyloxycarbonylaminoacyl-4-oxymethyl)phenylacetamidomethyl-resin, an improved support for solid-phase peptide synthesis. J Org Chem... [Pg.219]

Sheppard RC, Williams BJ. Acid-labile resin linkage agents for use in solid phase peptide synthesis. Int J Peptide Protein Res 1982 20 451 454. [Pg.219]

Akaji K, Kiso Y, Carpino LA. Fmoc-based solid-phase peptide synthesis using a new t-alcohol type 4-(l, l -dimethyl-l -hydroxypropyl)phenoxyace-tyl handle (DHPP)-resin (Fmoc = 9-fluorenyloxycarbonyl). J Chem Soc Chem Comm 1990 584-586. [Pg.219]

Ramage R, Barron CA, Bielecki S, Holden R, Thomas DW. Solid phase peptide synthesis Fluoride ion release of peptide from the resin. Tetrahedron Lett 1987 28 4105-4108. [Pg.220]

Zheng A, Shan D, Shi X, Wang B. A model resin linker for solid-phase peptide synthesis which can be cleaved using two sequential mild reactions. J Org Chem 1999 64 7459-7466. [Pg.220]

Bourne GT, Meutermans WDF, Alewood PF, McGeary RP, Scanlon M, Watson AA, Smythe ML. A backbone linker for Boc-based peptide synthesis and on-resin cyclization Synthesis of stylostatin 1. J Org Chem 1999 64 3095-3101. [Pg.222]

This is traditionally justified since it removes the bulky fluorescent dye from the bioactive sequence. Nonacidic cleavage conditions in the release of targeted peptide from the resin is also a strategy when FTIC is used in solid phase peptide synthesis. [Pg.45]

The novel concept of synthesizing a molecule while attached to a swollen cross-linked resin bead was introduced and demonstrated by R. B. Merrifield with the solid-phase peptide synthesis method about 20 years ago (1,2). The procedure involves the covalent attachment of an amino-acid residue to the polymer bead followed by the addition of subsequent amino-acid units in a stepwise manner under conditions that do not disrupt the attachment to the support. At the completion of the assembly of the peptide, the product is cleaved from the resin and recovered. The macro-scopically insoluble support provides convenient containment of the desired product so that isolation and purification from soluble co-products in the synthesis can be achieved by simple... [Pg.501]

Finally, dendrimers have been synthesized using solid phase peptide synthesis resins, wherein the core is linked to the resin and the half-dendrimer (dendron) is built out from it in sequential steps (Marsh et al., 1996 Swali et al., 1997 Wells et al., 1998). The advantage of this method... [Pg.347]


See other pages where Resins, peptide synthesis is mentioned: [Pg.138]    [Pg.666]    [Pg.138]    [Pg.666]    [Pg.203]    [Pg.1036]    [Pg.127]    [Pg.109]    [Pg.137]    [Pg.137]    [Pg.30]    [Pg.121]    [Pg.24]    [Pg.305]    [Pg.182]    [Pg.184]    [Pg.72]    [Pg.502]    [Pg.510]    [Pg.247]    [Pg.1012]   
See also in sourсe #XX -- [ Pg.554 , Pg.556 ]




SEARCH



Peptide-resin

Resins synthesis

© 2024 chempedia.info