Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Resin thermosetting plastic

Polyester resins thermosetting plastics used for laminating, encapsulation and casting, and as dough moulding compounds (qv) for compression moulding. Mainly used as liquid binders for glass fibre (and other fibre) reinforced plastics. [Pg.64]

Thermoset plastics are chemically setting synthetic resins. Thermoset plastics set in the hot mould by crosslinking (chemical process), as opposed to thermoplastic fieezing in a sufficiently cold mould (physical process). Synthetic resins tend to form shrinkage cracks, since a plastic deformation is practically impossible. The various resin types are shown in Table 7.1. Phenohc resins may also be referred to as Bakelite (after the chemist Baekeland who invented phenolic resin). [Pg.107]

Amino resins are thermosetting polymers made by combining an aldehyde with a compound containing an amino (—NH2) group. Urea—formaldehyde (U/F) accounts for over 80% of amino resins melamine—formaldehyde accounts for most of the rest. Other aldehydes and other amino compounds are used to a very minor extent. The first commercially important amino resin appeared about 1930, or some 20 years after the introduction of phenol—formaldehyde resins and plastics (see Phenolic resins). [Pg.321]

The term amino resin is usually appHed to the broad class of materials regardless of appHcation, whereas the term aminoplast or sometimes amino plastic is more commonly appHed to thermosetting molding compounds based on amino resins. Amino plastics and resins have been in use since the 1920s. Compared to other segments of the plastics industry, they are mature products, and their growth rate is only about half of that of the plastics industry as a whole. They account for about 3% of the United States plastics and resins production. [Pg.321]

The thermoplastic or thermoset nature of the resin in the colorant—resin matrix is also important. For thermoplastics, the polymerisation reaction is completed, the materials are processed at or close to their melting points, and scrap may be reground and remolded, eg, polyethylene, propjiene, poly(vinyl chloride), acetal resins (qv), acryhcs, ABS, nylons, ceUulosics, and polystyrene (see Olefin polymers Vinyl polymers Acrylic ester polymers Polyamides Cellulose ESTERS Styrene polymers). In the case of thermoset resins, the chemical reaction is only partially complete when the colorants are added and is concluded when the resin is molded. The result is a nonmeltable cross-linked resin that caimot be reworked, eg, epoxy resins (qv), urea—formaldehyde, melamine—formaldehyde, phenoHcs, and thermoset polyesters (qv) (see Amino resins and plastics Phenolic resins). [Pg.456]

Commonly accepted practice restricts the term to plastics that serve engineering purposes and can be processed and reprocessed by injection and extmsion methods. This excludes the so-called specialty plastics, eg, fluorocarbon polymers and infusible film products such as Kapton and Updex polyimide film, and thermosets including phenoHcs, epoxies, urea—formaldehydes, and sdicones, some of which have been termed engineering plastics by other authors (4) (see Elastol rs, synthetic-fluorocarbon elastol rs Eluorine compounds, organic-tdtrafluoroethylenecopolyt rs with ethylene Phenolic resins Epoxy resins Amino resins and plastics). [Pg.261]

The largest user of phenol in the form of thermosetting resins is the plastics industry. Phenol is also used as a solvent and in the manufacture of intermediates for pesticides, pharmaceuticals, and dyestuffs. Styrene is used in the manufacture of synthetic rubber and polystyrene resins. Phthalic anhydride is used in the manufacture of DMT, alkyd resins, and plasticizers such as phthalates. Maleic anhydride is used in the manufacture of polyesters and, to some extent, for alkyd resins. Minor uses include the manufacture of malathion and soil conditioners. Nitrobenzene is used in the manufacture of aniline, benzidine, and dyestuffs and as a solvent in polishes. Aniline is used in the manufacture of dyes, including azo dyes, and rubber chemicals such as vulcanization accelerators and antioxidants. [Pg.55]

This chapter discusses synthetic polymers based primarily on monomers produced from petroleum chemicals. The first section covers the synthesis of thermoplastics and engineering resins. The second part reviews thermosetting plastics and their uses. The third part discusses the chemistry of synthetic rubbers, including a brief review on thermoplastic elastomers, which are generally not used for tire production but to make other rubber products. The last section addresses synthetic fibers. [Pg.324]

Important thermosetting plastics include the phenolics, melamine-formaldehyde, epoxides and polyester resins used in glass-reinforced plastics. (See also Sections 14.5 and 14.9.)... [Pg.917]

The mechanical properties of plastics materials may often be considerably enhanced by embedding fibrous materials in the polymer matrix. Whilst such techniques have been applied to thermoplastics the greatest developents have taken place with the thermosetting plastics. The most common reinforcing materials are glass and cotton fibres but many other materials ranging from paper to carbon fibre are used. The fibres normally have moduli of elasticity substantially greater than shown by the resin so that under tensile stress much of the load is borne by the fibre. The modulus of the composite is intermediate to that of the fibre and that of the resin. [Pg.921]

Rubbers and thermosetting plastics The conventionally covalently cross-linked rubbers and plastics cannot dissolve without chemical change. They will, however, swell in solvents of similar solubility parameter, the degree of swelling decreasing with increase in cross-link density. The solution properties of the thermoelastomers which are two-phase materials are much more complex and dependent on whether or not the rubber phase and the resin domains are dissolved by the solvent. [Pg.930]

Thermoset Plastics Alkyd, amino resin, thermosetting acrylic resin, casein, epoxy, phenolic, polyester, polyamide, silicone. [Pg.602]

The polyester resins, reinforced with glass fibre, are the most common thermosetting plastics used for chemical plant. Complex shapes can be easily formed using the techniques developed for working with reinforced plastics. Glass-reinforced plastics are relatively... [Pg.302]

Large quantities are used as a raw material in the chemical process industry, especially for urea across C02 reaction with NH3 and later dehydration of the formed carbamate. Urea is the product most used as agricultural fertiliser. It is used in feed for ruminants, as carbon cellulose explosives stabiliser in the manufacture of resins and also for thermosetting plastic products, among others. [Pg.107]

Thermosetting phenolic resins in wood, 26 355 Thermosetting plastics... [Pg.943]

Resins vs. Plastics Thermoplastics vs. Thermoset Homopolymers vs. Copolymers Bifuncrional vs. Polyfunctional Linear vs. Branched vs. Cross-Linked Addition vs. Condensation... [Pg.319]

Table 12.3 summarizes the uses of formaldehyde. Two important thermosetting plastics, urea- and phenol-copolymers, take nearly one half the formaldehyde manufactured. Urea-formaldehyde resins are used in particleboard, phenol-formaldehyde resins in plywood. 1,4-Butanediol is made for some polyesters and is an example of acetylene chemistry that has not yet been replaced. Tetrahydrofiiran (THF) is a common solvent that is made by dehydration of 1,4-butanediol. [Pg.209]

What was the first synthetic plastic Although some nineteenth-century experiments should be mentioned, such as the 1869 molding process for cellulose nitrate discovered by John and Isaiah Hyatt, probably the first major breakthrough came in 1910 with Leo Baekeland s discovery of phenol formaldehyde resins (Bakelite ). These are still the leading thermoset plastics made today. The pioneering work of Wallace Carothers at Du Pont in 1929 produced the nylons now used primarily as fibers but known as the beginning of thermoplastic resin technology. [Pg.292]

Most structural PMCs consist of a relatively soft matrix, such as a thermosetting plastic of polyester, phenolic, or epoxy, sometimes referred to as resin-matrix composites. Some typical polymers used as matrices in PMCs are listed in Table 1.28. The list of metals used in MMCs is much shorter. Aluminum, magnesium, titanium, and iron- and nickel-based alloys are the most common (see Table 1.29). These metals are typically utilized due to their combination of low density and good mechanical properties. Matrix materials for CMCs generally fall into fonr categories glass ceramics like lithium aluminosilicate oxide ceramics like aluminnm oxide (alnmina) and mullite nitride ceramics such as silicon nitride and carbide ceramics such as silicon carbide. [Pg.103]


See other pages where Resin thermosetting plastic is mentioned: [Pg.317]    [Pg.20]    [Pg.291]    [Pg.515]    [Pg.150]    [Pg.320]    [Pg.321]    [Pg.368]    [Pg.980]    [Pg.24]    [Pg.745]    [Pg.301]    [Pg.168]    [Pg.208]    [Pg.99]    [Pg.217]    [Pg.318]    [Pg.389]    [Pg.252]    [Pg.397]    [Pg.562]    [Pg.131]    [Pg.216]    [Pg.150]    [Pg.320]    [Pg.419]    [Pg.449]   
See also in sourсe #XX -- [ Pg.13 ]




SEARCH



Phenolic resin thermosetting plastic

Plastic pipe reinforced-thermosetting-resin

Plastic resins

Plasticizer resins

Plastics thermosets

Reinforced plastics thermosetting resins used

Resin thermoset

Resinous plasticizers

Resins, plastic, definition thermosets

Thermoset plastic

Thermosets (Thermosetting Plastics)

Thermosetting plastics , adhesives silicone resins

Thermosetting plastics epoxy resins

Thermosetting plastics phenol formaldehyde resins

Thermosetting plastics urea-formaldehyde resins

Thermosetting plastics urea-melamine resins

Thermosetting resins

© 2024 chempedia.info