Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Remainder

Let us now consider a few examples for the use of this simple representation. A grand composite curve is shown in Fig. 14.2. The distillation column reboiler and condenser duties are shown separately and are matched against it. Neither of the distillation columns in Fig. 14.2 fits. The column in Fig. 14.2a is clearly across the pinch. The distillation column in Fig. 14.26 does not fit, despite the fact that both reboiler and condenser temperatures are above the pinch. Strictly speaking, it is not appropriately placed, and yet some energy can be saved. By contrast, the distillation shown in Fig. 14.3a fits. The reboiler duty can be supplied by the hot utility. The condenser duty must be integrated with the rest of the process. Another example is shown in Fig. 14.36. This distillation also fits. The reboiler duty must be supplied by integration with the process. Part of the condenser duty must be integrated, but the remainder of the condenser duty can be rejected to the cold utility. [Pg.344]

Light oil of camphor is an almost colourless fraction containing a small amount of camphor, about 30% of cineole and the remainder terpenes. [Pg.286]

Crude oils contain, in very small quantities, water, sediments and mineral salts most of which are dissolved in the water, the remainder found as very fine crystals. [Pg.326]

The character of a satellite development has considerable implications for a mature field in decline, but will not always have a positive economic effect on the life of the host. The remainder of this section will address the advantages of incremental development from the perspective of managing decline. [Pg.363]

In the remainder of this paper, we exhibit the solution of the deconvolution problem in the frequency domain, but it is possible to establish an analogy with tlie temporal solution exposed by G. Demoment [5,6]. [Pg.746]

The second task is then analysing the results of the scan. The results can be displayed live on a display screen, or stored and presented all at once or after further scaling and analysis. This playback feature of sample data will be the subject of the remainder of the paper, for as we will see the playback need not be immediate nor on site, but could take place synchronously or asynchronously over the Internet. [Pg.1018]

The remainder of the chapter is concerned with increasingly specialized developments in the study of gas adsorption, and before proceeding to this material, it seems desirable to consider briefly some of the experimental techniques that are important in obtaining gas adsorption data. See Ref. 22 for a review of traditional methods, and Ref 23 for lUPAC (International Union of Pure and Applied Chemistry) recommendations for symbols and definitions. [Pg.615]

As a simple model of a heterogeneous surface, assume that 20% of it consists of sites of Q= 2.5 kcal/mol 45% of sites Q = 3.5 kcal/mol and the remainder, of sites of Q= 4.5 kcal/mol. Calculate Q(P, T) for nitrogen at 77 K and at 90 K, assuming the adsorption to follow the Langmuir equation with bo given by Eq. XVII-15. Calculate qsi for several 6 values and compare the result with the assumed integral distribution hinction. [Pg.675]

While not unique, the Scluodinger picture of quantum mechanics is the most familiar to chemists principally because it has proven to be the simplest to use in practical calculations. Hence, the remainder of this section will focus on the Schrodinger fomuilation and its associated wavefiinctions, operators and eigenvalues. Moreover, effects associated with the special theory of relativity (which include spin) will be ignored in this subsection. Treatments of alternative fomuilations of quantum mechanics and discussions of relativistic effects can be found in the reading list that accompanies this chapter. [Pg.5]

In the previous section we discussed light and matter at equilibrium in a two-level quantum system. For the remainder of this section we will be interested in light and matter which are not at equilibrium. In particular, laser light is completely different from the thennal radiation described at the end of the previous section. In the first place, only one, or a small number of states of the field are occupied, in contrast with the Planck distribution of occupation numbers in thennal radiation. Second, the field state can have a precise phase-, in thennal radiation this phase is assumed to be random. If multiple field states are occupied in a laser they can have a precise phase relationship, something which is achieved in lasers by a teclmique called mode-locking Multiple frequencies with a precise phase relation give rise to laser pulses in time. Nanosecond experiments... [Pg.225]

The first step is to divide the total potential into two parts a reference part and the remainder treated as a perturbation. A coupling parameter X is introduced to serve as a switch which turns the perturbation on or off. [Pg.503]

Of the quantities shown in figure A2.4.8 is measurable, as is Sp, but the remainder are not and must be calculated. Values of 1-2 V have been obtained for although smaller values are found for the alkali metals. [Pg.588]

The above discussion represents a necessarily brief simnnary of the aspects of chemical reaction dynamics. The theoretical focus of tliis field is concerned with the development of accurate potential energy surfaces and the calculation of scattering dynamics on these surfaces. Experimentally, much effort has been devoted to developing complementary asymptotic techniques for product characterization and frequency- and time-resolved teclmiques to study transition-state spectroscopy and dynamics. It is instructive to see what can be accomplished with all of these capabilities. Of all the benclunark reactions mentioned in section A3.7.2. the reaction F + H2 —> HE + H represents the best example of how theory and experiment can converge to yield a fairly complete picture of the dynamics of a chemical reaction. Thus, the remainder of this chapter focuses on this reaction as a case study in reaction dynamics. [Pg.875]

The experiment is illustrated in figure B2.5.9. The initial pump pulse generates a localized wavepacket in the first excited state of Nal, which evolves with time. The potential well in the state is the result of an avoided crossing with the ground state. Every time the wavepacket passes this region, part of it crosses to the lower surface before the remainder is reflected at the outer wall of the potential. The crossing leads to... [Pg.2127]

In the remainder of this section, we will follow this simplifying (and problematic) assumption, and postulate that, upon the adiabatic to diabatic transfonnation, the Scln-ddinger equation has the fomi ... [Pg.2318]

Although the remainder of this contribution will discuss suspensions only, much of the theory and experimental approaches are applicable to emulsions as well (see [2] for a review). Some other colloidal systems are treated elsewhere in this volume. Polymer solutions are an important class—see section C2.1. For surfactant micelles, see section C2.3. The special properties of certain particles at the lower end of the colloidal size range are discussed in section C2.17. [Pg.2667]

The remainder of this contribution is organized as follows. In section C2.6.2, some well studied colloidal model systems are introduced. Methods for characterizing colloidal suspensions are presented in section C2.6.3. An essential starting point for understanding the behaviour of colloids is a description of the interactions between particles. Various factors contributing to these are discussed in section C2.6.4. Following on from this, theories of colloid stability and of the kinetics of aggregation are presented in section C2.6.5. Finally, section C2.6.6 is devoted to the phase behaviour of concentrated suspensions. [Pg.2668]

In the remainder of this section, we focus on the two lowest doublet states of Li3. Figures 3 and 4 show relaxed triangular plots [68] of the lower and upper sheets of the 03 DMBE III [69,70] potential energy surface using hyper-spherical coordinates. Each plot corresponds to a stereographic projection of the... [Pg.585]

Calculations of the GP effect have also been reported for isotopomers of X3 systems, which we address in the remainder of this section. For such systems, a... [Pg.607]

The first requirement is the definition of a low-dimensional space of reaction coordinates that still captures the essential dynamics of the processes we consider. Motions in the perpendicular null space should have irrelevant detail and equilibrate fast, preferably on a time scale that is separated from the time scale of the essential motions. Motions in the two spaces are separated much like is done in the Born-Oppenheimer approximation. The average influence of the fast motions on the essential degrees of freedom must be taken into account this concerns (i) correlations with positions expressed in a potential of mean force, (ii) correlations with velocities expressed in frictional terms, and iit) an uncorrelated remainder that can be modeled by stochastic terms. Of course, this scheme is the general idea behind the well-known Langevin and Brownian dynamics. [Pg.20]

The remainder of the columns contains the properties which arc to be predicted and are processed in the lower layer of the network. [Pg.464]

In Gunn and King s work only part of the experimental data is available as a check on the form of the dusty gas flux relations the remainder is absorbed in determining the values of the three adjustable parameters K, and In an interesting parallel investigation, Remick and... [Pg.95]


See other pages where Remainder is mentioned: [Pg.262]    [Pg.9]    [Pg.62]    [Pg.83]    [Pg.270]    [Pg.297]    [Pg.331]    [Pg.6]    [Pg.8]    [Pg.35]    [Pg.46]    [Pg.187]    [Pg.196]    [Pg.221]    [Pg.223]    [Pg.226]    [Pg.460]    [Pg.731]    [Pg.779]    [Pg.932]    [Pg.1265]    [Pg.1758]    [Pg.2364]    [Pg.2837]    [Pg.456]    [Pg.345]    [Pg.140]    [Pg.271]    [Pg.50]   
See also in sourсe #XX -- [ Pg.62 , Pg.63 ]




SEARCH



Chinese remainder algorithm

Chinese remainder theorem

Decimal remainders

Fractional remainders

Hybrid remainder

Partitioning and the Remainder Term

Reporting remainders

Rounding remainders

Selection stochastic remainder

Stochastic remainder

Taylor Series and Remainder

Truncating remainders

Virial remainder

© 2024 chempedia.info