Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Relaxation relative time scales

The obvious question to ask, then, is what are the relative time scales of the local density fluctuations and the decay of the force correlation function in compressible SCFs, and can this medium support inhomogeneous lifetime behavior To answer this question, we examined vibrational relaxation in the simple 2-dimensional Lennard-Jones solute-solvent system at the compressible state point, T = 0.55, p = 0.30 in greater detail. [Pg.413]

Relative Time Scales for Relaxation of Different Properties... [Pg.418]

How does one monitor a chemical reaction tliat occurs on a time scale faster tlian milliseconds The two approaches introduced above, relaxation spectroscopy and flash photolysis, are typically used for fast kinetic studies. Relaxation metliods may be applied to reactions in which finite amounts of botli reactants and products are present at final equilibrium. The time course of relaxation is monitored after application of a rapid perturbation to tire equilibrium mixture. An important feature of relaxation approaches to kinetic studies is that tire changes are always observed as first order kinetics (as long as tire perturbation is relatively small). This linearization of tire observed kinetics means... [Pg.2950]

Luminescence lifetime spectroscopy. In addition to the nanosecond lifetime measurements that are now rather routine, lifetime measurements on a femtosecond time scale are being attained with the intensity correlation method (124), which is an indirect technique for investigating the dynamics of excited states in the time frame of the laser pulse itself. The sample is excited with two laser pulse trains of equal amplitude and frequencies nl and n2 and the time-integrated luminescence at the difference frequency (nl - n2 ) is measured as a function of the relative pulse delay. Hochstrasser (125) has measured inertial motions of rotating molecules in condensed phases on time scales shorter than the collision time, allowing insight into relaxation processes following molecular collisions. [Pg.16]

In addition, water motion has been investigated in reverse micelles formed with the nonionic surfactants Triton X-100 and Brij-30 by Pant and Levinger [41]. As in the AOT reverse micelles, the water motion is substantially reduced in the nonionic reverse micelles as compared to bulk water dynamics with three solvation components observed. These three relaxation times are attributed to bulklike water, bound water, and strongly bound water motion. Interestingly, the overall solvation dynamics of water inside Triton X-100 reverse micelles is slower than the dynamics inside the Brij-30 or AOT reverse micelles, while the water motion inside the Brij-30 reverse micelles is relatively faster than AOT reverse micelles. This work also investigated the solvation dynamics of liquid tri(ethylene glycol) monoethyl ether (TGE) with different concentrations of water. Three relaxation time scales were also observed with subpicosecond, picosecond, and subnanosecond time constants. These time components were attributed to the damped solvent motion, seg-... [Pg.413]

When (DEB), is much smaller than unity, the polymer relaxation is relatively rapid compared to diffusion. In this case, conformational changes take place instantaneously and equilibrium is attained after each diffusional jump. This is the type of diffusion encountered ordinarily and is called viscous diffusion. Therefore, the transport will obey classical theories of diffusion. When (DEB), is much larger than unity, the molecular relaxation is very slow compared to diffusion and there are no conformational changes of the medium within the diffusion time scale. In this case, Fick s law is generally valid, but no concentration dependence of the diffusion coefficient is expected. This is termed elastic diffusion. When (DEB), is in the neighborhood of unity, molecular rearrangment... [Pg.471]

The role of the conditions in which these phenomena are observed is now well understood [40, 45], The chromophore should be solvatofluorochromic, that is, its fluorescence spectra should respond to changes in interaction energy with its environment by significant shifts. This environment should be relatively polar, but rigid or highly viscous, so that the relaxation times of its dipoles, tr, are comparable or longer than the fluorescence lifetime tf (in the case of recording the steady-state spectra) or on the time scale of observation (in time-resolved spectroscopy). Thus, these effects are coupled with molecular dynamics in condensed media. [Pg.115]

In general, a relatively direct and straightforward means of analysis may be performed in the case of slow exchange on the chemical shift time-scale by combining the relaxation matrices of the free and bound state with the kinetic matrix to describe the effect of exchange [12]. For the two spin systems described above the expanded relaxation matrix R can be written as ... [Pg.358]

It is clear that the function U ( qint ) tmy be approximated by an expression of the form of eqn. (6). Whether a potential of Ais form, involving no explicit description of the solvent, is appropriate depends on the relative relaxation rates of the solvent motions and the macromolecular intramolecular coordinates. For the slow, conformationally most significant, glycosidic and exocyclic bond rotations of the carbohydrate it is apparent Aat averaging of solvent motions can occur easily on the time scale of these torsions. It is more ficult, however, to know how much important conformational detail is submerged by the averaging process. [Pg.46]

Two-dimensional heteronuclear ( H- N) nuclear magnetic relaxation studies indicate that the dihydrofolate reductase-folate complex exhibits a diverse range of backbone fluctuations on the time-scale of picoseconds to nanoseconds To assess whether these dynamical features influence Michaelis complex formation, Miller et al used mutagenesis and kinetic measurements to assess the role of a strictly conserved residue, namely Gly-121, which displays large-amplitude backbone motions on the nanosecond time scale. Deletion of Gly-121 dramatically reduces the hydride transfer rate by 550 times there is also a 20-times decrease in NADPH cofactor binding affinity and a 7-fold decrease for NADP+ relative to wild-type. Insertion mutations significantly decreased both... [Pg.465]

A surprising aspect of SD is how rapidly C i) in highly polar solvents decays relative to other relaxation processes such as reorientation of solvent dipoles. This very rapid time scale cannot be ascribed to dynamical solvent-solvent correlations, which, as illustrated in Fig. 6, are modest even for the longest ranged A . Thus the key to imderstanding the reasons for the rapid decay of C i) is in examining how solvent-solvent correlations contribute to it and to what extent their contributions can be accounted for in terms of static correlations measured by ((5A ) ), Eq. (32). The initial cmvature of C(t), which characterizes its short-time Gaussian-like behavior is often characterized in terms of the solvation frequency co o/v... [Pg.220]

The time-temperature superposition principle has practical applications. Stress relaxation experiments are practical on a time scale of 10 to 10 seconds (10 to 10 hours), but stress relaxation data over much larger time periods, including fractions of a second for impacts and decades for creep, are necessary. Temperature is easily varied in stress relaxation experiments and, when used to shift experimental data over shorter time intervals, can provide a master curve over relatively large time intervals, as shown in Figure 5.65. The master curves for several crystalline and amorphous polymers are shown in Figure 5.66. [Pg.458]

Nuclear magnetic resonance (NMR) spectroscopy is a most effective and significant method for observing the structure and dynamics of polymer chains both in solution and in the solid state [1]. Undoubtedly the widest application of NMR spectroscopy is in the field of structure determination. The identification of certain atoms or groups in a molecule as well as their position relative to each other can be obtained by one-, two-, and three-dimensional NMR. Of importance to polymerization of vinyl monomers is the orientation of each vinyl monomer unit to the growing chain tacticity. The time scale involved in NMR measurements makes it possible to study certain rate processes, including chemical reaction rates. Other applications are isomerism, internal relaxation, conformational analysis, and tautomerism. [Pg.83]

In sharp contrast to the large number of experimental and computer simulation studies reported in literature, there have been relatively few analytical or model dependent studies on the dynamics of protein hydration layer. A simple phenomenological model, proposed earlier by Nandi and Bagchi [4] explains the observed slow relaxation in the hydration layer in terms of a dynamic equilibrium between the bound and the free states of water molecules within the layer. The slow time scale is the inverse of the rate of bound to free transition. In this model, the transition between the free and bound states occurs by rotation. Recently Mukherjee and Bagchi [14] have numerically solved the space dependent reaction-diffusion model to obtain the probability distribution and the time dependent mean-square displacement (MSD). The model predicts a transition from sub-diffusive to super-diffusive translational behaviour, before it attains a diffusive nature in the long time. However, a microscopic theory of hydration layer dynamics is yet to be fully developed. [Pg.219]

The physical and spectroscopic properties of a spin-equilibrium complex can appear to be either the average or the superposition of the properties of the separate spin states. Which occurs is dependent on the time scale of the observation relative to the relaxation time of the equilibrium. Thus the electronic and vibrational spectra always appear as a superposition of the two isomers because each spin state possesses a distinctive potential energy surface with its characteristic electronic and vibrational properties. On the other hand, the NMR spectra appear as the average of the spectra of the two spin states, for all but the slowest interconversions, because the frequency of the interconversion is high compared with the frequency differences of the chemical shifts or the inverse of the spin relaxation times of the two isomers. [Pg.37]

Figure 10. The calculated total friction (C(0) as a function of time, along with the relative contributions to it from the binary ( and the density relaxation Rpp t) terms for the system CH3 in CH3I. The reduced temperature T (= kaT/e) is 1.158 and the reduced density p for CH3I is 0.918. The time-dependent frictions are scaled by t 2, where = [mirTj/fcgT]1/2 1.1 ps. i and j represent the solute atom and the solvent atom, respectively. The plot shows a clear Gaussian component in the initial time scale for the binary part (r) and slower damped oscillatory behavior for the Rpf t) part. Figure 10. The calculated total friction (C(0) as a function of time, along with the relative contributions to it from the binary ( and the density relaxation Rpp t) terms for the system CH3 in CH3I. The reduced temperature T (= kaT/e) is 1.158 and the reduced density p for CH3I is 0.918. The time-dependent frictions are scaled by t 2, where = [mirTj/fcgT]1/2 1.1 ps. i and j represent the solute atom and the solvent atom, respectively. The plot shows a clear Gaussian component in the initial time scale for the binary part (r) and slower damped oscillatory behavior for the Rpf t) part.
Applied electric fields, whether static or oscillating, distort (polarize) the electron distribution and nuclear positions in molecules. Much of this volume describes effects that arise from the electronic polarization. Nuclear contributions to the overall polarization can be quite large, but occur on a slower time-scale than the electronic polarization. Electronic motion can be sufficiently rapid to follow the typical electric fields associated with incident UV to near IR radiation. This is the case if the field is sufficiently off resonance relative to electronic transitions and the nuclei are fixed (see ref 5 for contributions arising from nuclear motion). Relaxation between states need not be rapid, so... [Pg.95]


See other pages where Relaxation relative time scales is mentioned: [Pg.360]    [Pg.21]    [Pg.381]    [Pg.418]    [Pg.118]    [Pg.476]    [Pg.139]    [Pg.71]    [Pg.38]    [Pg.113]    [Pg.84]    [Pg.270]    [Pg.221]    [Pg.231]    [Pg.411]    [Pg.144]    [Pg.208]    [Pg.523]    [Pg.354]    [Pg.39]    [Pg.313]    [Pg.141]    [Pg.154]    [Pg.207]    [Pg.335]    [Pg.75]    [Pg.21]    [Pg.12]    [Pg.696]    [Pg.569]    [Pg.185]    [Pg.494]   
See also in sourсe #XX -- [ Pg.118 , Pg.119 , Pg.120 ]




SEARCH



Relative relaxation times

Scaled time

Time scales

Time, relativity

© 2024 chempedia.info