Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Folate dihydrofolate reductase

In view of the well-documented inhibition of dihydrofolate reductase by aminopterin (325), methotrexate (326) and related compounds it is generally accepted that this inhibitory effect constitutes the primary metabolic action of folate analogues and results in a block in the conversion of folate and dihydrofolate (DHF) to THF and its derivatives. As a consequence of this block, tissues become deficient in the THF derivatives, and this deficiency has many consequences similar to those resulting from nutritional folate deficiency. The crucial effect, however, is a depression of thymidylate synthesis with a consequent failure in DNA synthesis and arrest of cell division that has lethal results in rapidly proliferating tissues such as intestinal mucosa and bone marrow (B-69MI21604, B-69MI21605). [Pg.326]

Folic acid derivatives (folates) are acceptors and donors of one-carbon units for all oxidation levels of carbon except that of CO2 (where biotin is the relevant carrier). The active coenzyme form of folic acid is tetrahydrofolate (THF). THF is formed via two successive reductions of folate by dihydrofolate reductase (Figure 18.35). One-carbon units in three different oxidation states may be bound to tetrahydrofolate at the and/or nitrogens (Table 18.6). These one-carbon units... [Pg.602]

FIGURE 18.35 Formation of THF from folic acid by the dihydrofolate reductase reaction. The R group on these folate molecules symbolizes the one to seven (or more) glutamate units that folates characteristically contain. All of these glutamates are bound in y-carboxyl amide linkages (as in the folic acid structure shown in the box A Deeper Look Folic Acid, Pterins, and Insect VFingis). The one-carbon units carried by THF are bound at N, or at or as a single carbon attached to both... [Pg.603]

Folate metabolism Sulphonamides (also ) Trimethoprim Pyrimethamine Trimetrexate / Inhibit folate synthesis Inhibits dihydrofolate reductase Inhibits dihydrofolate reductase Inhibits dihydrofolate reductase Not present in mammalian cells Mammalian enzyme not inhibited Mammalian enzyme not inhibited Toxicity overcome with leucovorin... [Pg.163]

Folates carry one-carbon groups in transfer reactions required for purine and thymidylic acid synthesis. Dihydrofolate reductase is the enzyme responsible for supplying reduced folates intracellularly for thymidylate and purine synthesis. [Pg.1286]

Folic acid antagonist inhibits dihydrofolate reductase (DHFR) blocks reduction of folate to tetrahydrofolate inhibits de novo purine synthesis results in arrest of DNA, RNA, and protein synthesis... [Pg.1409]

In the Kohn-Sham Hamiltonian, the SVWN exchange-correlation functional was used. Equation 4.12 was applied to calculate the electron density of folate, dihydrofolate, and NADPH (reduced nicotinamide adenine dinucleotide phosphate) bound to the enzyme— dihydrofolate reductase. For each investigated molecule, the electron density was compared with that of the isolated molecule (i.e., with VcKt = 0). A very strong polarizing effect of the enzyme electric field was seen. The largest deformations of the bound molecule s electron density were localized. The calculations for folate and dihydrofolate helped to rationalize the role of some ionizable groups in the catalytic activity of this enzyme. The results are,... [Pg.108]

Bajorath, J., D. H. Kitson, G. Fitzgerald, J. Andzelm, J. Kraut, and A. T. Hagler. 1991. Local Density Functional Calculations on a Protein System Folate and Escherichia Coli dihydrofolate reductase. Electron Redistribution on Binding of a Substrate to an Enzyme. PROTEINS 9, 217. [Pg.128]

Among these drugs, the dihydrofolate reductase (DHFR) inhibitors are used clinically with a certain amount of success. They belong to two major classes the classical antifolates which feature a polar amino-acid side chain terminus and those containing nonpolar side chains, called lipophilic or nonclassical anti-folates. [Pg.164]

Drug efficacy is directly related to its intracellular concentration level, so it is necessary to evaluate the MTX concentration in cells. In particular, MTX is a folate antagonist, thus it binds to dihydrofolate reductase in competition with folate [71-77]. A low intracellular level of MTX caused by high efflux and low uptake in resistant cells is also the main disadvantage of MTX medication [78,79]. This leads to a high dosage of MTX for cancer treatment, which is also directly associated with adverse effects. [Pg.409]

R. L. Blakley, Dihydrofolate reductase, in Folates and Pterins, Chemistry and... [Pg.361]

Kraut, Crystal structures of recombinant dihydrofolate reductase complexed with folate and 5-deazafolate, Biochemistry 29 9467 (1990). [Pg.363]

Although affinity chromatography has not been used directly as an analytical method, it may be modified in the future to produce a viable technique. Leucovorin has been used as an effective spacer in obtaining active samples of dihydrofolate reductase.79 If the enzyme could be immobilized without losing its activity, perhaps it could be used to separate folates. [Pg.343]

Methotrexate acid produced Antineoplastic (Cancer) Inhibits dihydrofolate reductase, enzyme that converts folate... [Pg.41]

Inhibit Enzymes Many drugs are competitive inhibitors of key enzymes in pathways. The statin drugs (lovastatin, simvastatin), used to control blood cholesterol levels, competitively inhibit 3-hvdroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase in cholesterol biosynthesis. Methotrexate, an antineoplastic drug, competitively inhibits dihydrofolate reductase, depriving the cell of active folate needed for purine and deoxythymidine synthesis, thus interfering with DNA replication during S phase. [Pg.124]

TFIF is formed from the vitamin folate through two reductions catalyzed by dihydrofolate reductase shown in Figure 1-17-4. It picks up a one-carbon unit from a variety of donors and enters the active one-carbon pool. Important pathways lequirii forms of THF from this pool include the synthesis of all purines and thymidine, wfakh in turn are used for DNA and RNA synthesis during cell growth and division. [Pg.249]

Fig. 14.1 Cellular pathway of methotrexate. ABCBl, ABCCl-4, ABC transporters ADA, adenosine deaminase ADP, adenosine diphosphate AICAR, aminoimidazole carboxamide ribonucleotide AMP, adenosine monophosphate ATIC, AICAR transformylase ATP, adenosine triphosphate SjlO-CH -THF, 5,10-methylene tetrahydrofolate 5-CHj-THF, 5-methyl tetrahydro-folate DHFR, dihydrofolate reductase dTMP, deoxythymidine monophosphate dUMP, deoxy-uridine monophosphate FAICAR, 10-formyl AICAR FH, dihydrofolate FPGS, folylpolyglutamyl synthase GGH, y-glutamyl hydrolase IMP, inosine monophosphate MTHFR, methylene tetrahydrofolate reductase MTR, methyl tetrahydrofolate reductase MTX-PG, methotrexate polyglutamate RFCl, reduced folate carrier 1 TYMS, thymidylate synthase. Italicized genes have been targets of pharmacogenetic analyses in studies published so far. (Reproduced from ref. 73 by permission of John Wiley and Sons Inc.)... Fig. 14.1 Cellular pathway of methotrexate. ABCBl, ABCCl-4, ABC transporters ADA, adenosine deaminase ADP, adenosine diphosphate AICAR, aminoimidazole carboxamide ribonucleotide AMP, adenosine monophosphate ATIC, AICAR transformylase ATP, adenosine triphosphate SjlO-CH -THF, 5,10-methylene tetrahydrofolate 5-CHj-THF, 5-methyl tetrahydro-folate DHFR, dihydrofolate reductase dTMP, deoxythymidine monophosphate dUMP, deoxy-uridine monophosphate FAICAR, 10-formyl AICAR FH, dihydrofolate FPGS, folylpolyglutamyl synthase GGH, y-glutamyl hydrolase IMP, inosine monophosphate MTHFR, methylene tetrahydrofolate reductase MTR, methyl tetrahydrofolate reductase MTX-PG, methotrexate polyglutamate RFCl, reduced folate carrier 1 TYMS, thymidylate synthase. Italicized genes have been targets of pharmacogenetic analyses in studies published so far. (Reproduced from ref. 73 by permission of John Wiley and Sons Inc.)...
These are pyrimidine derivatives and are effective because of differences in susceptibility between the enzymes in humans and in the infective organism. Anticancer agents based on folic acid, e.g. methotrexate, inhibit dihydrofolate reductase, but they are less selective than the antimicrobial agents and rely on a stronger binding to the enzyme than the natural substrate has. They also block pyrimidine biosynthesis. Methotrexate treatment is potentially lethal to the patient, and is usually followed by rescue with folinic acid (A -formyl-tetrahydrofolic acid) to counteract the folate-antagonist action. The rationale is that folinic acid rescues normal cells more effectively than it does tumour cells. [Pg.455]

Formation of THF from dihydrofolate (DHF) is catalyzed by the enzyme dihydrofolate reductase. DHF is made from folic acid, a vitamin that cannot be synthesized in the body, but must be taken up from exogenous sources. Most bacteria do not have a requirement for folate, because they are capable of synthesizing folate, more precisely DHF, from precursors. Selective interference with bacterial biosynthesis of THF can be achieved with sulfonamides and trimethoprim. [Pg.272]

Inhibition of nucleobase synthesis (2). Tetrahydrofolic acid (THF) is required for the synthesis of both purine bases and thymidine. Formation of THF from folic acid involves dihydrofolate reductase (p. 272). The folate analogues aminopterin and methotrexate (ame-thopterin) inhibit enzyme activity as false substrates. As cellular stores of THF are depleted, synthesis of DNA and RNA building blocks ceases. The effect of these antimetabolites can be reversed Ltillmann, Color Atlas of Pharmacology 2000 Thieme All rights reserved. Usage subject to terms and conditions of iicense. [Pg.298]

Two-dimensional heteronuclear ( H- N) nuclear magnetic relaxation studies indicate that the dihydrofolate reductase-folate complex exhibits a diverse range of backbone fluctuations on the time-scale of picoseconds to nanoseconds To assess whether these dynamical features influence Michaelis complex formation, Miller et al used mutagenesis and kinetic measurements to assess the role of a strictly conserved residue, namely Gly-121, which displays large-amplitude backbone motions on the nanosecond time scale. Deletion of Gly-121 dramatically reduces the hydride transfer rate by 550 times there is also a 20-times decrease in NADPH cofactor binding affinity and a 7-fold decrease for NADP+ relative to wild-type. Insertion mutations significantly decreased both... [Pg.465]

Pharmacology Trimetrexate, a 2.4-diaminoquinazoline, nonclassical folate antagonist, is a synthetic inhibitor of the enzyme dihydrofolate reductase. The end result is disruption of DNA, RNA, and protein synthesis, with consequent cell death. Pharmacokinetics Clearance was 38 15 ml /min/m and volume of distribution at steady state (Vdgs) was 20 8 L/m. The plasma concentration time profile declined... [Pg.1925]

Trimethoprim (TMP)-Sulfamethmazole (SMX) [Co-Trimoxazole] (Bactrim, Septra) [Antibiotic/Folate Antagonist] Uses un Rx prophylaxis, otitis media, sinusitis, bronchitis Action SMX T synth of dihydro-folic acid TMP T dihydrofolate reductase to impair protein synth Dose Adul. 1 DS tab PO bid or 5-20 mg/kg/24 h (based on TMP) IV in 3-4 doses P. jiroveci ... [Pg.313]

Folate coenzyme concentrations may also decline as a result of treatment with drugs that inhibit dihydrofolate reductase, eg, methotrexate. [Pg.142]


See other pages where Folate dihydrofolate reductase is mentioned: [Pg.274]    [Pg.518]    [Pg.274]    [Pg.274]    [Pg.518]    [Pg.274]    [Pg.40]    [Pg.43]    [Pg.151]    [Pg.327]    [Pg.148]    [Pg.154]    [Pg.297]    [Pg.176]    [Pg.874]    [Pg.1286]    [Pg.130]    [Pg.139]    [Pg.253]    [Pg.280]    [Pg.343]    [Pg.362]    [Pg.363]    [Pg.335]    [Pg.141]    [Pg.42]    [Pg.414]    [Pg.200]    [Pg.390]    [Pg.313]   
See also in sourсe #XX -- [ Pg.388 ]




SEARCH



7,8-Dihydrofolate

Dihydrofolate reductase

© 2024 chempedia.info