Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Relaxation molecular dynamics

Another way to get information about the relaxational behavior of these materials can be performed by dynamic mechanical calculations. In order to get information about the origin of the secondary y relaxation, molecular dynamic (MD) calculations over the repeating unit were performed. By this way considering the axial and equatorial equilibrium on the cyclohexyl group and the interconversion of these two... [Pg.68]

Since the development of grazing incidence x-ray diffraction, much of the convincing evidence for long-range positional order in layers has come from this technique. Structural relaxations from distorted hexagonal structure toward a relaxed array have been seen in heneicosanol [215]. Rice and co-workers combine grazing incidence x-ray diffraction with molecular dynamics simulations to understand several ordering transitions [178,215-219]. [Pg.135]

Niv M Y, Krylov A I and Gerber R B 1997 Photodissociation, electronic relaxation and recombination of HCI in Ar-n(HCI) clusters—non-adiabatic molecular dynamics simulations Faraday Discuss. Chem. Soc. 108 243-54... [Pg.2330]

Ben]amin I, Barbara P F, Gertner B J and Hynes J T 1995 Nonequilibrium free energy functions, recombination dynamics, and vibrational relaxation of tjin acetonitrile molecular dynamics of charge flow in the electronically adiabatic limit J. Phys. Chem. 99 7557-67... [Pg.3053]

Knowledge of the underlying nuclear dynamics is essential for the classification and description of photochemical processes. For the study of complicated systems, molecular dynamics (MD) simulations are an essential tool, providing information on the channels open for decay or relaxation, the relative populations of these channels, and the timescales of system evolution. Simulations are particularly important in cases where the Bom-Oppenheimer (BO) approximation breaks down, and a system is able to evolve non-adiabatically, that is, in more than one electronic state. [Pg.251]

The simulations also revealed that flapping motions of one of the loops of the avidin monomer play a crucial role in the mechanism of the unbinding of biotin. The fluctuation time for this loop as well as the relaxation time for many of the processes in proteins can be on the order of microseconds and longer (Eaton et al., 1997). The loop has enough time to fluctuate into an open state on experimental time scales (1 ms), but the fluctuation time is too long for this event to take place on the nanosecond time scale of simulations. To facilitate the exit of biotin from its binding pocket, the conformation of this loop was altered (Izrailev et al., 1997) using the interactive molecular dynamics features of MDScope (Nelson et al., 1995 Nelson et al., 1996 Humphrey et al., 1996). [Pg.44]

Wisdom, J. The Origin of the Kirkwood Gaps A Mapping for Asteroidal Motion Near the 3/1 Commensurability. Astron. J. 87 (1982) 577-593 Tuckerman, M., Martyna, G. J., Berne, J. Reversible Multiple Time Scale Molecular Dynamics. J. Chem. Phys. 97 (1992) 1990-2001 Tuckerman, M., Berne, J. Vibrational Relaxation in Simple Fluids Comparison of Theory and Simulation. J. Chem. Phys. 98 (1993) 7301-7318 Humphreys, D. D., Friesner, R. A., Berne, B. J. A Multiple-Time Step Molecular Dynamics Algorithm for Macromolecules. J. Chem. Phys. 98 (1994) 6885-6892... [Pg.347]

In a molecular dynamics calculation, you can add a term to adjust the velocities, keeping the molecular system near a desired temperature. During a constant temperature simulation, velocities are scaled at each time step. This couples the system to a simulated heat bath at Tq, with a temperature relaxation time of "r. The velocities arc scaled bv a factor X. where... [Pg.72]

Example If a drug molecule interacts with a receptor molecule through hydrogen bonds, then yon might restrain the distance between the donor and acceptor atoms involved in the hydrogen bonds. During a molecular dynamics simulation, these atoms would slay near an ideal value, while the rest of the molecular system fully relaxes. [Pg.83]

Molecular dynamics simulations of proteins often begin with a known structure (such as an X-ray diffraction structure) that you want to maintain during equilibration. Since the solvent may contain high energy hot spots, equilibration of the protein and solvent at the same time can change the protein conformation. To avoid this, select only the water molecules and run a molecular dynamics equilibration. This relaxes the water while fixing the protein structure. Then deselect the water and equilibrate the whole system. [Pg.75]

For constant temperature dynamics where the constant temperature check box in the Molecular Dynamics Options dialog box is checked, the energy will not remain constant but will fluctuate as energy is exchanged with the bath. The temperature, depending on the value set for the relaxation constant, will approach con-stan cy. [Pg.321]

The simplest method that keeps the temperature of a system constant during an MD simulation is to rescale the velocities at each time step by a factor of (To/T) -, where T is the current instantaneous temperature [defined in Eq. (24)] and Tq is the desired temperamre. This method is commonly used in the equilibration phase of many MD simulations and has also been suggested as a means of performing constant temperature molecular dynamics [22]. A further refinement of the velocity-rescaling approach was proposed by Berendsen et al. [24], who used velocity rescaling to couple the system to a heat bath at a temperature Tq. Since heat coupling has a characteristic relaxation time, each velocity V is scaled by a factor X, defined as... [Pg.58]

Another principal difficulty is that the precise effect of local dynamics on the NOE intensity cannot be determined from the data. The dynamic correction factor [85] describes the ratio of the effects of distance and angular fluctuations. Theoretical studies based on NOE intensities extracted from molecular dynamics trajectories [86,87] are helpful to understand the detailed relationship between NMR parameters and local dynamics and may lead to structure-dependent corrections. In an implicit way, an estimate of the dynamic correction factor has been used in an ensemble relaxation matrix refinement by including order parameters for proton-proton vectors derived from molecular dynamics calculations [72]. One remaining challenge is to incorporate data describing the local dynamics of the molecule directly into the refinement, in such a way that an order parameter calculated from the calculated ensemble is similar to the measured order parameter. [Pg.270]

Molecular modeling is an indispensable tool in the determination of macromolecular structures from NMR data and in the interpretation of the data. Thus, state-of-the-art molecular dynamics simulations can reproduce relaxation data well [9,96] and supply a model of the motion in atomic detail. Qualitative aspects of correlated backbone motions can be understood from NMR structure ensembles [63]. Additional data, in particular residual dipolar couplings, improve the precision and accuracy of NMR structures qualitatively [12]. [Pg.271]

Chemical shifts and coupling constants reveal the static structure of a molecule relaxation times reflect molecular dynamics. [Pg.10]

If the amount of the sample is sufficient, then the carbon skeleton is best traced out from the two-dimensional INADEQUATE experiment. If the absolute configuration of particular C atoms is needed, the empirical applications of diastereotopism and chiral shift reagents are useful (Section 2.4). Anisotropic and ring current effects supply information about conformation and aromaticity (Section 2.5), and pH effects can indicate the site of protonation (problem 24). Temperature-dependent NMR spectra and C spin-lattice relaxation times (Section 2.6) provide insight into molecular dynamics (problems 13 and 14). [Pg.68]

The relaxed structures of the various (rotational) symmetric toroidal forms were obtained by steepest decent molecular-dynamics simulations[15]. For the elongated tori derived from torus C240, the seven-fold rotational symmetry is found to be the most stable. Either five-fold or six-fold rotational symmetry is the most stable for the toroidal forms derived from tori Cjyo and C540, respectively (see Fig. 5). [Pg.79]

In the next section we describe the basic models that have been used in simulations so far and summarize the Monte Carlo and molecular dynamics techniques that are used. Some principal results from the scaling analysis of EP are given in Sec. 3, and in Sec. 4 we focus on simulational results concerning various aspects of static properties the MWD of EP, the conformational properties of the chain molecules, and their behavior in constrained geometries. The fifth section concentrates on the specific properties of relaxation towards equilibrium in GM and LP as well as on the first numerical simulations of transport properties in such systems. The final section then concludes with summary and outlook on open problems. [Pg.511]

Dielectric relaxation measurements of polyethylene grafted with acrylic acid(AA), 2-hydroxyethyl methacrylate (HEMA) and their binary mixture were carried out in a trial to explore the molecular dynamics of the grafted samples [125]. Such measurements provide information about their molecular packing and interaction. It was possible to predict that the binary mixture used yields a random copolymer PE—g—P(AA/HEMA), which is greatly enriched with HEMA. This method of characterization is very interesting and is going to be developed in different polymer/monomer systems. [Pg.512]


See other pages where Relaxation molecular dynamics is mentioned: [Pg.141]    [Pg.80]    [Pg.81]    [Pg.141]    [Pg.80]    [Pg.81]    [Pg.1510]    [Pg.1515]    [Pg.1744]    [Pg.298]    [Pg.75]    [Pg.82]    [Pg.97]    [Pg.321]    [Pg.359]    [Pg.383]    [Pg.392]    [Pg.82]    [Pg.94]    [Pg.97]    [Pg.270]    [Pg.380]    [Pg.154]    [Pg.51]    [Pg.24]    [Pg.221]    [Pg.28]    [Pg.83]    [Pg.84]    [Pg.45]   
See also in sourсe #XX -- [ Pg.526 ]




SEARCH



Molecular relaxations

Relaxation dynamics

© 2024 chempedia.info