Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Relaxation melting

Equations 3.4-3 and 3.4-4 form the molecular theory origins of the Lodge rubberlike liquid constitutive Eq. 3.3-15 (23). For large strains, characteristic of processing flows, the nonlinear relaxation spectrum is used in the memory function, which is the product of the linear spectrum and the damping function h(y), obtained from the stress relaxation melt behavior after a series of strains applied in stepwise fashion (53)... [Pg.125]

While the examples above used Young s modulus, many other parameters may be substituted. These include other moduli, rheological functions such as creep, stress relaxation, melt viscosity, and rubber elasticity. Each element may itself be expressed by temperature-, time-, or frequency-dependent quantities. It must also be noted that these models find application in composite problems as well. For example, a composite of continuous fibers in a plastic matrix can be described by Figure 10.6a if deformed in the direction of the fibers, and by Figure 10.66 if deformed in the transverse direction. [Pg.514]

The use of modulated DSC for improved interpretation of product characteristics under thermal effects was investigated. Tgs, for example, which are masked by postcuring or enthalpy relaxation, could be detected in a single measurement and compared. The separation of complex transitions in multicomponent systems into individual parts such as melts, transition temps, and relaxations was shown to be feasible. The potential for use of modulated DSC in the field of epoxy resins was demonstrated using examples of the determination of Tg near the regions of enthalpy relaxation, melt and post-curing. 7 refs. [Pg.108]

Tra.nsitions and Relaxations. Only one first-order transition is observed, the melting poiat. Increasing the pressure raises mp. At low pressure, the rate of iacrease ia the melting poiat is ca 1.74°C/MPa (0.012°C/psi) at high pressures this rate decreases to ca 0.725°C/MPa (0.005°C/psi). Melting iacreases the volume by 8%. la the preseace of the HFP comonomer, crystal distortioa occurs with an iacrease ia iatramolecular distance that, ia turn, reduces the melting poiat (54). [Pg.359]

Transitions. Samples containing 50 mol % tetrafluoroethylene with ca 92% alternation were quenched in ice water or cooled slowly from the melt to minimise or maximize crystallinity, respectively (19). Internal motions were studied by dynamic mechanical and dielectric measurements, and by nuclear magnetic resonance. The dynamic mechanical behavior showed that the CC relaxation occurs at 110°C in the quenched sample in the slowly cooled sample it is shifted to 135°C. The P relaxation appears near —25°C. The y relaxation at — 120°C in the quenched sample is reduced in peak height in the slowly cooled sample and shifted to a slightly higher temperature. The CC and y relaxations reflect motions in the amorphous regions, whereas the P relaxation occurs in the crystalline regions. The y relaxation at — 120°C in dynamic mechanical measurements at 1 H2 appears at —35°C in dielectric measurements at 10 H2. The temperature of the CC relaxation varies from 145°C at 100 H2 to 170°C at 10 H2. In the mechanical measurement, it is 110°C. There is no evidence for relaxation in the dielectric data. [Pg.366]

PVF displays several transitions below the melting temperature. The measured transition temperatures vary with the technique used for measurement. T (L) (lower) occurs at —15 to —20 " C and is ascribed to relaxation free from restraint by crystallites. T (U) (upper) is in the 40 to 50°C range and is associated with amorphous regions under restraint by crystallites (63). Another transition at —80° C has been ascribed to short-chain amorphous relaxation and one at 150°C associated with premelting intracrystalline relaxation. [Pg.380]

Cooling rates can affect product properties in a number of ways. If the polymer melt is sheared into shape the molecules will be oriented. On release of shearing stresses the molecules will tend to re-coil or relax, a process which becomes slower as the temperature is reduced towards the Tg. If the mass solidifies before relaxation is complete (and this is commonly the case) frozen-in orientation will occur and the polymeric mass will be anisotropic with respect to mechanical properties. Sometimes such built-in orientation is deliberately introduced, such as... [Pg.174]

The average polymer melt relaxation times between the processing temperature Tp and the solidifying temperature (the Tg in amorphous polymers and somewhere between Tg and with polycrystalline polymers). [Pg.176]

Internal stresses occur because when the melt is sheared as it enters the mould cavity the molecules tend to be distorted from the favoured coiled state. If such molecules are allowed to freeze before they can re-coil ( relax ) then they will set up a stress in the mass of the polymer as they attempt to regain the coiled form. Stressed mouldings will be more brittle than unstressed mouldings and are liable to crack and craze, particularly in media such as white spirit. They also show a characteristic pattern when viewed through crossed Polaroids. It is because compression mouldings exhibit less frozen-in stresses that they are preferred for comparative testing. [Pg.456]

The EMT analysis indicated that the stress relaxes in proportion to the number of bonds removed. The initial linear decrease of E/Eq with is intuitively appealing and is the basis for many linear constitutive theories of polymers. An example is the Doi-Edwards theory of viscoelasticity of linear polymer melts [49] in which... [Pg.377]

This example illustrates the simplified approach to film blowing. Unfortunately in practice the situation is more complex in that the film thickness is influenced by draw-down, relaxation of induced stresses/strains and melt flow phenomena such as die swell. In fact the situation is similar to that described for blow moulding (see below) and the type of analysis outlined in that section could be used to allow for the effects of die swell. However, since the most practical problems in film blowing require iterative type solutions involving melt flow characteristics, volume flow rates, swell ratios, etc the study of these is delayed until Chapter 5 where a more rigorous approach to polymer flow has been adopted. [Pg.268]

In Chapter 2 when the Maxwell and Kelvin models were analysed, it was found that the time constant for the deformations was given by the ratio of viscosity to modulus. This ratio is sometimes referred to as the Relaxation or Natural time and is used to give an indication of whether the elastic or the viscous response dominates the flow of the melt. [Pg.368]

Finally, we want to describe two examples of those isolated polymer chains in a sea of solvent molecules. Polymer chains relax considerably faster in a low-molecular-weight solvent than in melts or glasses. Yet it is still almost impossible to study the conformational relaxation of a polymer chain in solvent using atomistic simulations. However, in many cases it is not the polymer dynamics that is of interest but the structure and dynamics of the solvent around the chain. Often, the first and maybe second solvation shells dominate the solvation. Two recent examples of aqueous and non-aqueous polymer solutions should illustrate this poly(ethylene oxide) (PEO) [31]... [Pg.492]

To understand the global mechanical and statistical properties of polymeric systems as well as studying the conformational relaxation of melts and amorphous systems, it is important to go beyond the atomistic level. One of the central questions of the physics of polymer melts and networks throughout the last 20 years or so dealt with the role of chain topology for melt dynamics and the elastic modulus of polymer networks. The fact that the different polymer strands cannot cut through each other in the... [Pg.493]


See other pages where Relaxation melting is mentioned: [Pg.156]    [Pg.116]    [Pg.165]    [Pg.577]    [Pg.740]    [Pg.92]    [Pg.318]    [Pg.156]    [Pg.116]    [Pg.165]    [Pg.577]    [Pg.740]    [Pg.92]    [Pg.318]    [Pg.2365]    [Pg.258]    [Pg.447]    [Pg.123]    [Pg.134]    [Pg.309]    [Pg.317]    [Pg.317]    [Pg.179]    [Pg.407]    [Pg.427]    [Pg.150]    [Pg.248]    [Pg.251]    [Pg.257]    [Pg.360]    [Pg.177]    [Pg.523]    [Pg.523]    [Pg.66]    [Pg.247]    [Pg.236]    [Pg.575]    [Pg.478]    [Pg.377]    [Pg.616]    [Pg.363]    [Pg.484]   
See also in sourсe #XX -- [ Pg.2 , Pg.1231 , Pg.1232 , Pg.1233 ]




SEARCH



Relaxation time melts, molar mass

Relaxation times poly melts

© 2024 chempedia.info