Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reductive elimination from other metal complexes

Whether this condition can be fulfiUed depends on the electron count of the metal, and the stereochemistry of the elimination. For instance, in m-elimination from octahedral d , or square planar d , systems, metal ndipP -y ) acts as acceptor, and this should be a facile process ( e Fip. 1, 2). For /rans-elimination, on tiie other hand, the lowest empty orbital of correct symmetry is (n + l)p. Such elimination Kerns energetically less Ukely, unless a non-concerted pathway (such as successive anionic and cationic loss) is available. The same arguments apply, of course, to oxidative additions. It foUows that the many known cases of traits oxidative addition to square planar t/ systems are unlikely to take place by a concerted mechanism, and this conclusion is now generally accepted There are special complexities in reductive elimination from trigonal systems, and these are discussed furdier in Part III. [Pg.152]

In general, the termination reactions of these polymerizations are not well understood but, depending upon the metal and the monomer, reductive coupling of the metal carbene fragments to give alkene and reduced metal complexes is one possibility. Another termination reaction appears to be initiated by -Hydride Elimination from the carbene complex. These mechanisms have been observed in well-defined catalyst systems, and are possible in the ill-defined systems also. The fact that most catalysts are sensitive to oxygen and moisture (or other proton sources) means that termination of the polymer chain by added or adventitious sources of water is a common problem, especially for the ill-defined catalysts. [Pg.2684]

Carbon-carbon bond formation by reductive elimination from Ni, Pd, or Pt complexes is widespread. In many cases it is presumed to occur as the final step in a catalytic cycle, whereby the organic product is expelled from the metal center, but in others it is a well-defined, mechanistically studied reaction. Elimination takes place from Ni, Pd, and Pt complexes in their - - 2 or + A oxidation states, and it may be promoted by thermolysis, by photolysis, or by nucleophilic attack at the metal center. The reaction may proceed by heterolytic or homolytic metal-carbon bond cleavage, reductive elimination, or dinuclear elimination, and more than one mechanism may operate. [Pg.516]

The remainder of this section will focus on true SBMs, which have been the subject of vigorous research. Despite the electron deficiency of early transition metal, lanthanide, and actinide complexes, several groups reported that some of these d f" complexes do react with the H-H bond from dihydrogen and C-H bonds from alkanes, alkenes, arenes, and alkynes in a type of exchange reaction shown in equation 11.32. So many examples of SBM involving early, middle, and late transition metal complexes have appeared in the chemical literature over the past 20 years that chemists now consider this reaction to be another fundamental type of organometallic transformation along with oxidative addition, reductive elimination, and others that we have already discussed. [Pg.510]

Recently, Milstein and coworkers reported an interesting CH3-I reductive elimination chemistry from Rh(III) complexes (Scheme 31) [74]. The reactions, driven by steric bulk of the pincer ligands, represent the first example of the directly observed reductive elimination from metal complexes other than group 10. It was proposed that the reactions proceed via a concerted three-centered transition state rather than the SN2-type back attack of the halide at the methyl group, as was proposed for the isoelectronic Pt(IV) complexes. To the best of our knowledge, no... [Pg.34]

Pd-cataly2ed reactions of butadiene are different from those catalyzed by other transition metal complexes. Unlike Ni(0) catalysts, neither the well known cyclodimerization nor cyclotrimerization to form COD or CDT[1,2] takes place with Pd(0) catalysts. Pd(0) complexes catalyze two important reactions of conjugated dienes[3,4]. The first type is linear dimerization. The most characteristic and useful reaction of butadiene catalyzed by Pd(0) is dimerization with incorporation of nucleophiles. The bis-rr-allylpalladium complex 3 is believed to be an intermediate of 1,3,7-octatriene (7j and telomers 5 and 6[5,6]. The complex 3 is the resonance form of 2,5-divinylpalladacyclopentane (1) and pallada-3,7-cyclononadiene (2) formed by the oxidative cyclization of butadiene. The second reaction characteristic of Pd is the co-cyclization of butadiene with C = 0 bonds of aldehydes[7-9] and CO jlO] and C = N bonds of Schiff bases[ll] and isocyanate[12] to form the six-membered heterocyclic compounds 9 with two vinyl groups. The cyclization is explained by the insertion of these unsaturated bonds into the complex 1 to generate 8 and its reductive elimination to give 9. [Pg.423]

In the application of the polarographic method of analysis to steel a serious difficulty arises owing to the reduction of iron(III) ions at or near zero potential in many base electrolytes. One method of surmounting the difficulty is to reduce iron(III) to iron(II) with hydrazinium chloride in a hydrochloric acid medium. The current near zero potential is eliminated, but that due to the reduction of iron(II) ions at about - 1.4 volts vs S.C.E. still occurs. Other metals (including copper and lead) which are reduced at potentials less negative than this can then be determined without interference from the iron. Alternatively, the Fe3 + to Fe2+ reduction step may be shifted to more negative potentials by complex ion formation. [Pg.619]

The complex TpPtMeH2 was synthesized by reacting TpPtMe(CO) with water (66). While it is stable towards reductive elimination of methane at 55 °C, deuterium incorporation from methanol-c/4 solvent occurs rapidly into the hydride positions and subsequently, more slowly, into the methyl position (Scheme 15). The scrambling into the methyl position has been attributed to reversible formation of a methane complex which does not lose methane under the reaction conditions (75,76). Similar scrambling reactions have been observed for other metal alkyl hydrides at temperatures below those where alkane reductive elimination becomes dominant (77-84). This includes examples of scrambling without methane loss at elevated temperature (78). [Pg.273]

For example, complex 37 with an imidazolin-2-ylidene and a methyl ligand in cis-position to each other decomposes to yield the 1,2,3-trimethylimidazolium salt 38, Pd°, and cod (Fig. 13) [124], Additional examples for the reductive elimination of 2-alkyl and 2-aryl substituted azohum salts from palladium or nickel NHC complexes have been reported [125, 126]. Today, reductive elimination reactions have been established as one important reaction pathway for the deactivation of catalytically active metal NHC complexes [126, 127]. [Pg.109]

Other methods for obtaining complexes of ethylene and other alkenes include ligand substitution reactions, reduction of a higher valent metal in the presence of an alkene, and synthesis from alkyl and related species [reductive elimination, of an allyl or hydride, for example hydride abstraction from alkyls protonation of sigma-allyls from epoxides (indirectly)] [74a],... [Pg.170]


See other pages where Reductive elimination from other metal complexes is mentioned: [Pg.103]    [Pg.333]    [Pg.31]    [Pg.340]    [Pg.311]    [Pg.160]    [Pg.142]    [Pg.693]    [Pg.2683]    [Pg.174]    [Pg.101]    [Pg.119]    [Pg.70]    [Pg.128]    [Pg.532]    [Pg.544]    [Pg.554]    [Pg.333]    [Pg.336]    [Pg.337]    [Pg.641]    [Pg.151]    [Pg.371]    [Pg.121]    [Pg.1127]    [Pg.93]    [Pg.246]    [Pg.34]    [Pg.816]    [Pg.391]    [Pg.153]    [Pg.46]    [Pg.245]    [Pg.231]    [Pg.693]    [Pg.241]    [Pg.18]    [Pg.146]    [Pg.566]   


SEARCH



Complex elimination

Complexes reduction

Complexity reduction

From others

Metal complexes reduction

Other Reductants

Other metals

Reductive elimination complexes

© 2024 chempedia.info