Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Amino acids reduction

When soybean leaves and pine needles were exposed to ozone, there was an initial decrease in the levels of soluble sugars followed by a subsequent increase. Ozone exposure also caused a decrease in the activity of the glycolytic pathway and the decrease in the activity was reflected in a lowered rate of nitrate reduction. Amino acids and protein also accumulated in soybean leaves following exposure. Ozone increased the activities of enzymes involved in phenol metabolism (phenylalanine ammonia lyase and polyphenoloxidase). There was also an increase in the levels of total phenols. Leachates from fescue leaves exposed to ozone inhibited nodulation. [Pg.40]

Biomimetic Reductions Amino Acid Dehydrogenases as the Role Model for the Brpnsted Acid Catalyzed Transfer Hydrogenation... [Pg.207]

Hydrolysis of the azlactone leads to the acylaminooinnamic acid the latter may be be reduced catal3rtlcally (Adams PtOj catalyst 40 lb. p.s.i.) and then hydrolysed by hydrochloric acid to the amino acid. Alternatively, the azlactone (say, of a-benzylaminocinnamic acid) may undergo reduction and cleavage with phosphorus, hydriodic acid and acetic anhydride directly to the a-amino acid (d/ p phenylalanine). [Pg.908]

Also the arene-arene interactions, as encountered in Chapter 3, are partly due to hydrophobic effects, which can be ranked among enforced hydrophobic interactions. Simultaneous coordination of an aromatic oc amino acid ligand and the dienophile to the central copper(II) ion offers the possibility of a reduction of the number of water molecules involved in hydrophobic hydration, leading to a strengthening of the arene-arene interaction. Hence, hydrophobic effects can have a beneficial influence on the enantioselectivity of organic reactions. This effect is anticipated to extend well beyond the Diels-Alder reaction. [Pg.169]

Another procedure for obtaining a-aminoketones is by reduction of a-nitrosoketones in the presence of the required carboxylic acid. Acylaminoketones are prepared either by reacting acids with the chlorhydrate of a-aminoketones according to the method of Pictet and Gauss (41) or by the action of acid anhydrides upon a-amino acids (550). [Pg.282]

The nutrient sparing effect of antibiotics may result from reduction or elimination of bacteria competing for consumed and available nutrients. It is also recognized that certain bacteria synthesize vitamins (qv), amino acids (qv), or proteins that may be utilized by the host animal. Support of this mode of action is found in the observed nutritional interactions with subtherapeutic use of antibiotics in animal feeds. Protein concentration and digestibiHty, and amino acid composition of consumed proteins may all influence the magnitude of response to feeding antibiotics. Positive effects appear to be largest... [Pg.410]

The differences in the amino acid chemistry of the hide coUagen and the hair keratin are the basis of the lime-sulfide unhairing system. Hair contains the amino acid cystine. This sulfur-containing amino acid cross-links the polypeptide chains of mature hair proteins. In modem production of bovine leathers the quantity of sulfide, as Na2S or NaSH, is normally 2—4% based on the weight of the hides. The lime is essentially an unhmited supply of alkah buffered to pH 12—12.5. The sulfide breaks the polypeptide S—S cross-links by reduction. Unhairing without sulfide may take several days or weeks. The keratin can be easily hydrolyzed once there is a breakdown in the hair fiber stmcture and the hair can be removed mechanically. The coUagen hydrolysis is not affected by the presence of the sulfides (1—4,7). [Pg.83]

Although FeMo-cofactor is clearly knpHcated in substrate reduction cataly2ed by the Mo-nitrogenase, efforts to reduce substrates using the isolated FeMo-cofactor have been mosdy equivocal. Thus the FeMo-cofactor s polypeptide environment must play a critical role in substrate binding and reduction. Also, the different spectroscopic features of protein-bound vs isolated FeMo-cofactor clearly indicate a role for the polypeptide in electronically fine-tuning the substrate-reduction site. Site-directed amino acid substitution studies have been used to probe the possible effects of FeMo-cofactor s polypeptide environment on substrate reduction (163—169). Catalytic and spectroscopic consequences of such substitutions should provide information concerning the specific functions of individual amino acids located within the FeMo-cofactor environment (95,122,149). [Pg.90]

Formation of Schiff-Bases. Reaction of an amino acid and an aldehyde oi ketone gives a Schiff-base in neutral or alkaline solution, and following reduction gives the corresponding Ai-alkylamino acid. [Pg.280]

The close electrochemical relationship of the simple quinones, (2) and (3), with hydroquinone (1,4-benzenediol) (4) and catechol (1,2-benzenediol) (5), respectively, has proven useful in ways extending beyond their offering an attractive synthetic route. Photographic developers and dye syntheses often involve (4) or its derivatives (10). Biochemists have found much interest in the interaction of mercaptans and amino acids with various compounds related to (3). The reversible redox couple formed in many such examples and the frequendy observed quinonoid chemistry make it difficult to avoid a discussion of the aromatic reduction products of quinones (see Hydroquinone, resorcinol, and catechol). [Pg.403]

The natural moisture of the cocoa bean combined with the heat of roasting cause many chemical reactions other than flavor changes. Some of these reactions remove unpleasant volatile acids and astringent compounds, partially break down sugars, modify tannins and other nonvolatile compounds with a reduction in bitterness, and convert proteins to amino acids that react with sugars to form flavor compounds, particularly pyrazines (4). To date, over 300 different compounds, many of them formed during roasting, have been identified in the chocolate flavor (5). [Pg.91]

Ring fission occurs readily in many of these compounds. For example, azlactones, i.e. 4JT-oxazolin-5-ones containing an exocyclic C=C bond at the 4-position (508), are hydrolyzed to a-benzamido-a,/3-unsaturated acids (509), further hydrolysis of which gives a-keto acids (510). Reduction and subsequent hydrolysis in situ of azlactones is used in the synthesis of a-amino acids e.g. 508 -> 507). [Pg.101]


See other pages where Amino acids reduction is mentioned: [Pg.106]    [Pg.106]    [Pg.29]    [Pg.233]    [Pg.492]    [Pg.87]    [Pg.99]    [Pg.167]    [Pg.108]    [Pg.409]    [Pg.410]    [Pg.175]    [Pg.505]    [Pg.88]    [Pg.90]    [Pg.274]    [Pg.246]    [Pg.281]    [Pg.371]    [Pg.43]    [Pg.63]    [Pg.74]    [Pg.475]    [Pg.307]    [Pg.348]    [Pg.349]    [Pg.350]    [Pg.146]    [Pg.193]    [Pg.281]    [Pg.264]   
See also in sourсe #XX -- [ Pg.258 ]




SEARCH



© 2024 chempedia.info