Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reduction transfer conditions

Isoquinoline also forms Reissert compounds when treated with benzoyl chloride and alkyl cyanide (28), especially under phase-transfer conditions (29). The W-phenylsulfonyl Reissert has been converted to 1-cyanoisoquinoline with sodium borohydride under mild conditions (154). When the AJ-benzoyl-l-alkyl derivative is used, reductive fission occurs and the 1-alkyLisoquinoline is obtained. [Pg.396]

LY311727 is an indole acetic acid based selective inhibitor of human non-pancreatic secretory phospholipase A2 (hnpsPLA2) under development by Lilly as a potential treatment for sepsis. The synthesis of LY311727 involved a Nenitzescu indolization reaction as a key step. The Nenitzescu condensation of quinone 4 with the p-aminoacrylate 39 was carried out in CH3NO2 to provide the desired 5-hydroxylindole 40 in 83% yield. Protection of the 5-hydroxyl moiety in indole 40 was accomplished in H2O under phase transfer conditions in 80% yield. Lithium aluminum hydride mediated reduction of the ester functional group in 41 provided the alcohol 42 in 78% yield. [Pg.150]

Amides are very weak nucleophiles, far too weak to attack alkyl halides, so they must first be converted to their conjugate bases. By this method, unsubstituted amides can be converted to N-substituted, or N-substituted to N,N-disubstituted, amides. Esters of sulfuric or sulfonic acids can also be substrates. Tertiary substrates give elimination. O-Alkylation is at times a side reaction. Both amides and sulfonamides have been alkylated under phase-transfer conditions. Lactams can be alkylated using similar procedures. Ethyl pyroglutamate (5-carboethoxy 2-pyrrolidinone) and related lactams were converted to N-alkyl derivatives via treatment with NaH (short contact time) followed by addition of the halide. 2-Pyrrolidinone derivatives can be alkylated using a similar procedure. Lactams can be reductively alkylated using aldehydes under catalytic hydrogenation... [Pg.513]

Competitive reduction tests for cyclohexanone styrene, under transfer conditions, show preferential reduction of cyclohexanone however, under hydrogenation conditions the styrene is reduced exclusively.99 It is worth mentioning that the OsH2(r)2-H2)(CO)(P Pr3)2 precatalyst, formed by addition of NaBH4 to OsHCl (CO)(P Pr3)2, rapidly reduces phenylacetylene to styrene, under transfer conditions, but the reaction rate falls progressively due to the formation of Os(C=CPh)2 (CO)(P Pr3)2.72 As previously mentioned, an alkynyl-dihydrogen intermediate... [Pg.54]

Ironcarbonyl induces a similar reductive carbonylation of 150 with sodium methoxide [85], A catalytic cycle is formed by using CoCl2 and Ni(CN)2 as catalysts under phase-transfer conditions [86]. [Pg.134]

Treatment of l,l-dichloro-2,3-diphenylcyclopropane 175a with Fp" results in reduction to the monochlorocyclopropane 176a rather than substitution. Under typical phase-transfer conditions, the reaction leads to the bridging... [Pg.134]

Although similar efforts have been devoted to related polymer systems (Overberger and Cho, 1968 Overberger and Dixon, 1977 Okamoto, 1978), large enantioselectivity has not been observed. Goldberg et al. (1978) conducted borohydride reduction of phenyl ketones in micelles of the chiral surfactant [44]. The result was disappointing, since the maximal enantioselectivity was only 1.66% for phenyl propyl ketone. A much better optical yield was reported when this reaction was carried out under phase-transfer conditions (Masse and Parayre, 1976). The cholic acid micelle and bovine serum albumin exhibited the relatively high enantioselectivity in the reduction of trifluoroacetophenone (Baba ef al., 1978). [Pg.461]

Although it has been found possible to isolate the intermediate aldehyde in the reduction of the acid chlorides using sodium borohydride in the presence of dimethylformamide, no analogous procedure has been developed for use under phase-transfer conditions [12],... [Pg.478]

Demercuration of organomercury compounds is a critical step in synthetic procedures, which involve mercuration-initiated cyclization reactions [e.g. 41], Many of the standard procedures for demercuration result in rearrangement or ring cleavage of the system, but reductive carbon-mercury cleavage (e.g. Scheme 11.4) with an excess of the quaternary ammonium borohydride is effective under phase-transfer conditions [e.g. 42,43]. [Pg.487]

The selective 1,4-reduction of a,p-unsaturated carbonyl compounds is always a challenge, but it has been met successfully by the use of dithionite under phase-transfer conditions. Reduction proceeds in high yield to the total exclusion of saturated or allylic alcohols (Table 11.10) [5, 6], Exocyclic and endocyclic conjugated C=C double bonds are reduced with equal ease, whereas non-conjugated double bonds remain intact. The predominant reduction pathway for conjugated dienoic... [Pg.495]

The yields of ketones, isolated from the reductive debromination of a-bromo-ketones by dicobalt octacarbonyl under basic phase-transfer conditions are good (Table 11.13), but are improved (>95%) by the use of stoichiometric amounts of the quaternary ammonium catalyst. Somewhat unexpectedly, in the case of the reductive dehalogenation of secondary benzylic halides, the yields of the coupled alkanes are... [Pg.498]

In many respects the apparently analogous reduction of nitroarenes with triruthenium dodecacarbonyl under basic phase-transfer conditions is superior to that of the iron carbonyl-mediated reductions. However, the difference in the dependence of the two processes on the concentration of the aqueous sodium hydroxide and the pressure of the carbon monoxide suggests that they may proceed by different mechanisms. Although the iron-based system is most effective under dilute alkaline conditions in the absence of carbon monoxide, the use of 5M sodium hydroxide is critical for the ruthenium-based system, which also requires an atmosphere of carbon monoxide [11]. The ruthenium-based reduction has been extended to the... [Pg.502]

Activated mercaptans undergo desulfurization to hydrocarbons using cobalt carbonyl or triiron dodecacarbonyl as the metal complex, and basic phase transfer conditions (5 ). Acidic phase transfer catalysis has been little investigated, the first example in organometallic chemistry being reported in 1983 (reduction of diarylethylenes)( ). When acidic phase transfer conditions (sodium 4-dodecylcenzenesulfo-nate as the phase transfer catalyst) were used for the desulfurization of mercaptans [Fe3(CO)] 2 the metal complex],... [Pg.9]

Catalytic one-pot procedure. Since in the described teUuronium ylide olefmation tellurox-ide is formed as a by-product, and the telluroxide is susceptible to reduction by triphenyl phosphite, a catalytic procedure can be employed, providing a practical one-pot synthesis of a, -unsaturated esters and ketones (method E). By this procedure, a catalytic amount of n-dibutyl telluride reacts with the a-bromoester or a-bromoketone, and the formed tel-luronium salt is converted in situ under phase transfer conditions (solid KjCOj/trace HjO) into the ylide, which reacts in turn with the aldehyde, giving the olefin. Since the reaction is performed in the presence of triphenyl phosphite, the formed dibutyl telluroxide is reduced back to the dibutyl telluride, which is then recycled. [Pg.219]

Cyclopropane ring formation under electron transfer conditions shows no stereoselectivity. Reduction in dimethylformamide of pure meso- or ( )-2,4-dibromopentene gives the same mixture of cis- and rra s-l,2-dimethylcyclo-pentane [92], Cis- and /ranj-l,3-dibromocyclohexane are both satisfactory substrates for formation of bicyclo[3.1.0]hexane and either isomer of 1,3-dibromocyclopentane affords bicyclo[2.1.0]pentane [93]. Endo-2,endo-6-dibromobomane 16 gives a mixttire of tricyclene and bomane on electrochemical... [Pg.111]

IV-acetylhyellazole, which on deacetylation with sodium hydroxide under phase transfer conditions afforded hyellazole (245) (538,539). Removal of the acetyl group from N-acetylcarazostatin (691b), by reduction with lithium aluminum hydride, provided carazostatin (247) (595) (Scheme 5.60). [Pg.231]

The synthesis of the amino alcohol (5S,6S)-6-amino-5-decanol begins with reaction of the 1-chloropentylboronic ester (Section 1.1.2.1.3.1.) with sodium azide under phase-transfer conditions to form the a-azido boronic ester, which yields the a-chloro- -azidoalkyl boronic ester (1) [yield 92 % 95 % de] with (dichloromethyl)lithium under the usual conditions. The reaction of 1 with butylmagnesium chloride is unusual in that it requires zinc chloride in order to accomplish the replacement of chlorine by butyl to form /J-azidoalkyl boronic ester 2 without boron-azide /1-elimination. Standard peroxidic deboronation and reduction of the azide complete the synthesis15. [Pg.1096]

Recently, we established that several proton acids catalyze the metal-free reduction of ketimines under hydrogen-transfer conditions with Hantzsch dihydropyridine as the hydrogen source.Additionally, we were able to demonstrate a catalytic enantioselective procedure of this new transformation by employing a chiral Br0nsted acid as catalyst.(see Chapter 4.1). [Pg.170]

Our solution to this synthetic problem was the development of an iterative technique for preparing hydroxypropyl ethers from allyl ethers via oxymercuration-reduction. Figure 3 illustrates the process for the preparation of a series of three chain-extended hydroxypropyl derivatives of 2,6-dimethoxyphenol. Conversion of phenol 1 to the allyl ether 2 under phase-transfer conditions (6) was followed by oxymercuration (7) to give the intermediate organomercurial 3, which was reduced without isolation to give hydroxypropyl ether 4 in 64% overall yield. Ether 4. was then allylated to provide 5, which upon oxymercuration-reduction afforded hydroxypropyl derivative 6. One further iteration of the allylation-oxymercuration-reduction sequence yielded the hydroxypropyl compound 7. [Pg.428]

Although many recent improvements in the preparation of the Simmons Smith reagent might be helpful23 24, the authors of this chapter would recommend one to consider an alternative two-step cyclopropanation procedure, which includes cycloaddition of dichloro- or dibromocarbene to methylenecycloalkane25 followed by reductive dehalo-genation (equation l)26. The first reaction is usually carried under phase transfer conditions and presents a very simple and efficient procedure. Reduction of gem-dihalocyclopropanes with lithium in tert-butanol or with sodium in liquid ammonia usually proceeds without complications and with high yield. [Pg.866]

Conjugate reduction of enones.1 Under phase-transfer conditions (Aliquat, NaHC03), a,0-enones undergo exclusive 1,4-reduction with Na2S204 (yields 70-85%). [Pg.281]

These cyclic aminomercurials are particularly prone to alkene formation and rearrangement during reduction. However, alkaline sodium borohydride under phase transfer conditions usually works well.2 9,2 ... [Pg.291]

Reduction of halides and sulfonates.2 Sodium borohydride effects this reaction under phase-transfer conditions (aqueous C6H5CH3 or CH2C12). The more lipophilic salts hexadecyltributylphosphonium bromide or tetraoctylammonium bromide are the most effective catalysts. [Pg.244]

Reduction of conjugated diunsaturated acids.3 a,/ y, 5-Diunsaturated acids are reduced by sodium dithionite in an alkaline medium (NaOH, NaHC03) to a mixture of (Z)- and (E)-/J,y-unsaturated acids (40 75% yield). A similar reduction of the diunsaturated esters is possible under phase-transfer conditions (Adogen 464, C6H6-HzO). [Pg.248]


See other pages where Reduction transfer conditions is mentioned: [Pg.737]    [Pg.5]    [Pg.78]    [Pg.226]    [Pg.394]    [Pg.242]    [Pg.24]    [Pg.171]    [Pg.675]    [Pg.383]    [Pg.533]    [Pg.149]    [Pg.471]    [Pg.483]    [Pg.485]    [Pg.8]    [Pg.85]    [Pg.315]    [Pg.120]    [Pg.162]    [Pg.92]    [Pg.613]    [Pg.372]    [Pg.513]    [Pg.105]   
See also in sourсe #XX -- [ Pg.291 ]




SEARCH



Reduction conditions

Reduction transfer

Reductive conditions

© 2024 chempedia.info