Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aldehydes, ketones reduction

Reductions. Aldehydes, ketones, acid chlorides, carboxylic acids, and N-Boc amino acids are reduced to the corresponding alcohols, generally in excellent yields. The reduction of a,P-epoxy ketones gives alcohols without affecting the heterocycle. ... [Pg.130]

In summary, the reactivity of various functional groups toward Li 9-BBNH is classified into four broad categories [18] (1) rapid- or fast-reduction aldehyde, ketone, ester, lactone, acylchloride, acid anhydride, epoxide, disulfide, -alkyli-odide, and tosylate (2) slow-reduction tertiary amide, alkylbromide, and aromatic nitrile (3) sluggish-reduction carboxylic acid, aliphatic nitrile, primary amide, nitro and azoxy compounds, and secondary alkylbromide and tosylate (4) inert olefin, oxime, alkylchloride, sulfoxide, azo-compound, sulfide, sulfone, and sulfonic acid. [Pg.414]

Clemmensen reduction Aldehydes and ketones may generally be reduced to the corresponding hydrocarbons by healing with amalgamated zinc and hydrochloric acid. [Pg.102]

Reduction of Aldehydes, Ketones, and Carboxylic Acid Derivatives... [Pg.105]

Carbonyl deductions. The classical Wolff-Kishner reduction of ketones (qv) and aldehydes (qv) involves the intermediate formation of a hydrazone, which is then decomposed at high temperatures under basic conditions to give the methylene group, although sometimes alcohols may form (40). [Pg.277]

Reduction ol ketones or aldehydes to hydiocaitxjns by means ol zinc amalgam and acid... [Pg.68]

By application of the Clemmensen reduction,aldehydes and ketones 1 can be converted into the corresponding hydrocarbons 2. As the reducing agent zinc amalgam, together with concentrated hydrochloric acid or gaseous hydrogen chloride, is used. [Pg.62]

Another important synthetic method for the reduction of ketones and aldehydes to the corresponding methylene compounds is the Woljf-Kishner reduction. This reaction is carried out under basic conditions, and therefore can be applied for the reduction of acid-sensitive substrates it can thus be regarded as a complementary method. The experimental procedure for the Clemmensen reduction is simpler however for starting materials of high molecular weight the Wolff-Kishner reduction is more successful. [Pg.63]

The reduction of ketones to secondary alcohols and of aldehydes to primary alcohols using aluminum alkoxides is called the Meerw>ein-Ponndorf-Verley reduction. The reverse reaction also is of synthetic value, and is called the Oppenauer oxidation. ... [Pg.199]

Anhydrides are reduced with relative ease. McAlees and McCrindle 20) established the following increasing order of difficulty for various carbonyls acid chlorides > aldehydes, ketones > anhydrides > esters > carboxylic acids > amides. Reduction may proceed by 1,2-addilion of hydrogen or by cleavage of an oxygen-carbonyl bond. If 1,2-addition to the carbonyl occurs, as in the presence of strong protic acids over palladium, 1,1-diesters are formed by acylation 26). [Pg.79]

Alcohols are among the most versatile of all organic compounds. They occur widely in nature, are important industrial 7, and have an unusually rich chemistry. The most widely used methods of alcohol synthesis start with carbonyl compounds. Aldehydes, ketones, esters, and carboxylic acids are reduced by reaction with LiAlH4. Aldehydes, esters, and carboxylic acids yield primary alcohols (RCH2OH) on reduction ketones yield secondary alcohols (R2CHOH). [Pg.637]

Treatment of an aldose or ketose with NaBH4 reduces it to a polyalcohol called an alditol. The reduction occurs by reaction of the open-chain form present in the aldehyde/ketone hemiacetal equilibrium. Although only a small amount of the open-chain form is present at any given time, that small amount is reduced, more is produced by opening of the pyranose form, that additional amount is reduced, and so on, until the entire sample has undergone reaction. [Pg.992]

D. Conjugate Reduction of Conjugated Aldehydes, Ketones, Acids, Esters and Nitriles... [Pg.460]

In this section primarily reductions of aldehydes, ketones, and esters with sodium, lithium, and potassium in the presence of TCS 14 are discussed closely related reductions with metals such as Zn, Mg, Mn, Sm, Ti, etc., in the presence of TCS 14 are described in Section 13.2. Treatment of ethyl isobutyrate with sodium in the presence of TCS 14 in toluene affords the O-silylated Riihlmann-acyloin-condensation product 1915, which can be readily desilylated to the free acyloin 1916 [119]. Further reactions of methyl or ethyl 1,2- or 1,4-dicarboxylates are discussed elsewhere [120-122]. The same reaction with trimethylsilyl isobutyrate affords the C,0-silylated alcohol 1917, in 72% yield, which is desilylated to 1918 [123] (Scheme 12.34). Likewise, reduction of the diesters 1919 affords the cyclized O-silylated acyloin products 1920 in high yields, which give on saponification the acyloins 1921 [119]. Whereas electroreduction on a Mg-electrode in the presence of MesSiCl 14 converts esters such as ethyl cyclohexane-carboxylate via 1922 and subsequent saponification into acyloins such as 1923 [124], electroreduction of esters such as ethyl cyclohexylcarboxylate using a Mg-electrode without Me3SiCl 14 yields 1,2-ketones such as 1924 [125] (Scheme 12.34). [Pg.281]

The reduction of ketones, aldehydes, and olefins has been extensively explored using chemical and biological methods. As the latter method, reduction by heterotrophic microbes has been widely used for the synthesis of chiral alcohols. On the contrary, the use of autotrophic photosynthetic organisms such as plant cell and algae is relatively rare and has not been explored because the method for cultivation is different from that of heterotrophic microbes. Therefore, the investigation using photosynthetic organisms may lead to novel biotransformations. [Pg.51]

Reduction of carbonyl groups Terpene and aromatic aldehydes (lOOppm) were reduced by microalgae. In a series of chlorinated benzaldehyde, m - or p-chlorobenzaldehyde reacted faster than the o-derivative. Due to toxicity, the substrate concentrations are difficult to increase. Asymmetric reductions of ketones by microalgae were reported. Thus, aliphatic " and aromatic " ketones were reduced. [Pg.53]

The catalytic hydrosi(ly)lations of other C=X functional groups (X = O, NR) constitute alternative routes to the reduction of aldehydes, ketones, imines and other carbonyl compounds (Scheme 2.9), circumventing the use of molecular hydrogen or occasionally harsh transfer hydrogenation conditions. [Pg.35]

Reduction with [Cp2Zr(H)Cl]n (1) of common C=X functional groups such as aldehydes, ketones, nitriles and related functionality is also possible. [Pg.266]

Optically active /3-ketoiminato cobalt(III) compounds based on chiral substituted ethylenedi-amine find use as efficient catalysts for the enatioselective hetero Diels Alder reaction of both aryl and alkyl aldehydes with l-methoxy-(3-(t-butyldimethylsilyl)oxy)-1,3-butadiene.1381 Cobalt(II) compounds of the same class of ligands promote enantioselective borohydride reduction of ketones, imines, and a,/3-unsaturated carboxylates.1382... [Pg.118]


See other pages where Aldehydes, ketones reduction is mentioned: [Pg.42]    [Pg.103]    [Pg.179]    [Pg.81]    [Pg.2094]    [Pg.101]    [Pg.2]    [Pg.62]    [Pg.63]    [Pg.133]    [Pg.184]    [Pg.23]    [Pg.609]    [Pg.959]    [Pg.279]    [Pg.310]    [Pg.212]    [Pg.150]    [Pg.1198]    [Pg.29]    [Pg.159]    [Pg.1335]    [Pg.212]    [Pg.219]    [Pg.220]    [Pg.114]    [Pg.75]   
See also in sourсe #XX -- [ Pg.145 , Pg.146 , Pg.147 , Pg.148 , Pg.149 , Pg.150 , Pg.151 , Pg.152 ]




SEARCH



Aldehydes reduction

Aldehydes reductive

© 2024 chempedia.info