Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reduced state Reducing agents

The most abundant literature is that bearing on solar eneigy conversion, mainly centered on the use of Ru(2,2 -bipyridine)3 and its analogues. The excited state of the parent compound was found some years ago to be a powerful reducing agent [212], allowing the following spontaneous reactions to be written ... [Pg.419]

Stannate(II) ions are powerful reducing agents. Since, for tin, the stability of oxidation state -b4 is greater than that of oxidation state -b2, tin(II) always has reducing properties, but these are greater in alkaline conditions than in acid (an example of the effect of pH on the redox potential, p. 101). [Pg.192]

A reducing agent (for exampie sulphur dioxide) reduces the yellow chromate or orange dichromate to the green chromium(III) state. [Pg.384]

In this oxidation state, iron is quite readily oxidised by mild oxidising agents, and hence in many of the reactions it is a mild reducing agent. For acid conditions... [Pg.395]

Many mercury compounds are labile and easily decomposed by light, heat, and reducing agents. In the presence of organic compounds of weak reducing activity, such as amines (qv), aldehydes (qv), and ketones (qv), compounds of lower oxidation state and mercury metal are often formed. Only a few mercury compounds, eg, mercuric bromide/77< 5 7-/7, mercurous chloride, mercuric s A ide[1344-48-5] and mercurous iodide [15385-57-6] are volatile and capable of purification by sublimation. This innate lack of stabiUty in mercury compounds makes the recovery of mercury from various wastes that accumulate with the production of compounds of economic and commercial importance relatively easy (see Recycling). [Pg.112]

Reduction processes are characterized either by the reducing agent selected or by the physical state of the metallic product. The separation of reaction products determines the choice and design of the furnace. Reduction processes are classified according to the physical state of the reduced metal. [Pg.164]

Traditionally, these dyes are appHed from a dyebath containing sodium sulfide. However, development in dyeing techniques and manufacture has led to the use of sodium sulfhydrate, sodium polysulfide, sodium dithionite, thiourea dioxide, and glucose as reducing agents. In the reduced state, the dyes have affinity for cellulose (qv) and are subsequendy exhausted on the substrate with common salt or sodium sulfate and fixed by oxidation. [Pg.162]

Most metal carbonyls are synthesized in nonaqueous media. Reactive metals, such as sodium (85), magnesium (105), zinc (106), and aluminum (107,108), are usually used as reducing agents. Solvents that stabilize low oxidation states of metals and act as electron-transfer agents are commonly employed. These include diethyl ether, tetrahydrofiiran, and 2-methoxyethyl ether (diglyme). [Pg.68]

Low Oxidation State Chromium Compounds. Cr(0) compounds are TT-bonded complexes that require electron-rich donor species such as CO and C H to stabilize the low oxidation state. A direct synthesis of Cr(CO)g, from the metal and CO, is not possible. Normally, the preparation requires an anhydrous Cr(III) salt, a reducing agent, an arene compound, carbon monoxide that may or may not be under high pressure, and an inert atmosphere (see Carbonyls). [Pg.134]

In equation 1, the Grignard reagent, C H MgBr, plays a dual role as reducing agent and the source of the arene compound (see Grignard reaction). The Cr(CO)g is recovered from an apparent phenyl chromium intermediate by the addition of water (19,20). Other routes to chromium hexacarbonyl are possible, and an excellent summary of chromium carbonyl and derivatives can be found in reference 2. The only access to the less stable Cr(—II) and Cr(—I) oxidation states is by reduction of Cr(CO)g. [Pg.134]

Ghromium(III) Compounds. Chromium (ITT) is the most stable and most important oxidation state of the element. The E° values (Table 2) show that both the oxidation of Cr(II) to Cr(III) and the reduction of Cr(VI) to Cr(III) are favored in acidic aqueous solutions. The preparation of trivalent chromium compounds from either state presents few difficulties and does not require special conditions. In basic solutions, the oxidation of Cr(II) to Cr(III) is still favored. However, the oxidation of Cr(III) to Cr(VI) by oxidants such as peroxides and hypohaUtes occurs with ease. The preparation of Cr(III) from Cr(VI) ia basic solutions requires the use of powerful reducing agents such as hydra2ine, hydrosulfite, and borohydrides, but Fe(II), thiosulfate, and sugars can be employed in acid solution. Cr(III) compounds having identical counterions but very different chemical and physical properties can be produced by controlling the conditions of synthesis. [Pg.135]

Simplified nitrile mbber polymerization recipes are shown in Table 2 for "cold" and "hot" polymerization. Typically, cold polymerization is carried out at 5°C and hot at 30°C. The original technology for emulsion polymerization was similar to the 30°C recipe, and the redox initiator system that allowed polymerization at lower temperature was developed shortiy after World War II. The latter uses a reducing agent to activate the hydroperoxide initiator and soluble iron to reactivate the system by a reduction—oxidation mechanism as the iron cycles between its ferrous and ferric states. [Pg.519]


See other pages where Reduced state Reducing agents is mentioned: [Pg.399]    [Pg.418]    [Pg.1909]    [Pg.111]    [Pg.40]    [Pg.1168]    [Pg.23]    [Pg.302]    [Pg.342]    [Pg.343]    [Pg.357]    [Pg.80]    [Pg.275]    [Pg.504]    [Pg.505]    [Pg.119]    [Pg.384]    [Pg.28]    [Pg.247]    [Pg.447]    [Pg.455]    [Pg.201]    [Pg.288]    [Pg.170]    [Pg.390]    [Pg.439]    [Pg.113]    [Pg.149]    [Pg.399]    [Pg.402]    [Pg.196]    [Pg.368]    [Pg.468]    [Pg.308]    [Pg.178]    [Pg.4]    [Pg.1]    [Pg.21]    [Pg.76]   
See also in sourсe #XX -- [ Pg.428 ]




SEARCH



Reducing agent

© 2024 chempedia.info