Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reduced pressure discharge

Because oxygen-atom reaction rate constants can be orders of magnitude greater than those for ozone, an experiment done on material subject to a reduced-pressure discharge is likely to signify damage done by oxygen atoms, rather than ozone. [Pg.650]

Not only is there a need for the characterization of raw bulk materials but also the requirement for process controled industrial production introduced new demands. This was particularly the case in the metals industry, where production of steel became dependent on the speed with which the composition of the molten steel during converter processes could be controlled. After World War 11 this task was efficiently dealt with by atomic spectrometry, where the development and knowledge gained about suitable electrical discharges for this task fostered the growth of atomic spectrometry. Indeed, arcs and sparks were soon shown to be of use for analyte ablation and excitation of solid materials. The arc thus became a standard tool for the semi-quantitative analysis of powdered samples whereas spark emission spectrometry became a decisive technique for the direct analysis of metal samples. Other reduced pressure discharges, as known from atomic physics, had been shown to be powerful radiation sources and the same developments could be observed as reliable laser sources become available. Both were found to offer special advantages particularly for materials characterization. [Pg.374]

Vapor—vapor reactions (14,16,17) are responsible for the majority of ceramic powders produced by vapor-phase synthesis. This process iavolves heating two or more vapor species which react to form the desired product powder. Reactant gases can be heated ia a resistance furnace, ia a glow discharge plasma at reduced pressure, or by a laser beam. Titania [13463-67-7] Ti02, siUca, siUcon carbide, and siUcon nitride, Si N, are among some of the technologically important ceramic powders produced by vapor—vapor reactions. [Pg.306]

Proper vessel designs should avoid discharges from high-positioned coolers directed down a pipe. This situation reduces pressure in coolers via siphon action. [Pg.46]

Acetylene and Potassium in Liquid Ammonia Potassium (40 g) is dissolved in 1 liter of dry liquid ammonia. Dry acetylene is then bubbled into the solution until the blue color is discharged. A solution of 15 g of estrone in 300 ml of dioxane is prepared and diluted with 300 ml of ether, cooled, and added to the potassium acetylide solution over a period of 10 min. The liquid ammonia is allowed to evaporate, an additional 500 ml of ether is added, and the mixture is allowed to stand overnight. About 3 liters of 5 % sulfuric acid is added and the organic layer separated. The water layer is re-extracted with fresh ether, and the combined ether extracts are washed twice with 5 % sodium carbonate solution, th6n several times with water, and finally evaporated under reduced pressure. The residue is dissolved in 150 ml of methanol, then an equal quantity of hot water is added and the mixture cooled. The precipitated solid is collected, washed with cold 60 % methanol and crystallized once from methanol-water to give 14.8 g (85%) of 17a-ethynylestradiol mp 143-144°. [Pg.137]

Methylsulfinyl carbanion (dimsyl ion) is prepared from 0.10 mole of sodium hydride in 50 ml of dimethyl sulfoxide under a nitrogen atmosphere as described in Chapter 10, Section III. The solution is diluted by the addition of 50 ml of dry THF and a small amount (1-10 mg) of triphenylmethane is added to act as an indicator. (The red color produced by triphenylmethyl carbanion is discharged when the dimsylsodium is consumed.) Acetylene (purified as described in Chapter 14, Section I) is introduced into the system with stirring through a gas inlet tube until the formation of sodium acetylide is complete, as indicated by disappearance of the red color. The gas inlet tube is replaced by a dropping funnel and a solution of 0.10 mole of the substrate in 20 ml of dry THF is added with stirring at room temperature over a period of about 1 hour. In the case of ethynylation of carbonyl compounds (given below), the solution is then cautiously treated with 6 g (0.11 mole) of ammonium chloride. The reaction mixture is then diluted with 500 ml of water, and the aqueous solution is extracted three times with 150-ml portions of ether. The ether solution is dried (sodium sulfate), the ether is removed (rotary evaporator), and the residue is fractionally distilled under reduced pressure to yield the ethynyl alcohol. [Pg.124]

Safety Valve Required to Prelect Reducing Station Discharge Pressure in Cose of Valve Failure. SV-I is Set at Slightly Above Downstream Pressure of Reducing Station,and Protects All Equipment Operating at this Pressure on Steam Header. [Pg.429]

Although the analysis of parallel operation indicates that a fan may not operate satisfactorily, often it actually will operate, but under modified conditions. The effect of a slight difference in the individual fan ductwork can be enough to allow operation, or sometimes a change in damper setting will allow operation. Usually in such situations, efficiency will be reduced with a higher horsepower consumption. If the fans discharge toward each other in such a way as to affect each other s operation, the fans may actually operate at a reduced pressure, somewhere between the static and total pressure curves. ... [Pg.569]

In atmospheric pressure discharges, where concentrations of N atoms are greatly reduced and possibly absent, the discrimination between alkanes and alkenes is not observed and an alternative means of initiating the reaction is required. In the absence of significant concentrations of N, the mechanism may consist of collisional energy transfer from N2(A32 +), which lies 593 kJ mor1... [Pg.364]

Schematically the apparatus used for sputtering consists of a bell jar maintained at a reduced pressure of an inert gas such as argon. The gas is subjected to a potential difference of several kilovolts, producing a glow discharge from which positive ions are accelerated towards the target (the cathode). These high-energy ions remove... Schematically the apparatus used for sputtering consists of a bell jar maintained at a reduced pressure of an inert gas such as argon. The gas is subjected to a potential difference of several kilovolts, producing a glow discharge from which positive ions are accelerated towards the target (the cathode). These high-energy ions remove...

See other pages where Reduced pressure discharge is mentioned: [Pg.614]    [Pg.479]    [Pg.614]    [Pg.479]    [Pg.190]    [Pg.39]    [Pg.438]    [Pg.107]    [Pg.553]    [Pg.67]    [Pg.195]    [Pg.46]    [Pg.66]    [Pg.108]    [Pg.22]    [Pg.91]    [Pg.487]    [Pg.498]    [Pg.506]    [Pg.842]    [Pg.161]    [Pg.727]    [Pg.495]    [Pg.308]    [Pg.309]    [Pg.382]    [Pg.617]    [Pg.363]    [Pg.56]    [Pg.222]    [Pg.144]    [Pg.217]    [Pg.45]    [Pg.467]    [Pg.478]    [Pg.568]    [Pg.229]    [Pg.271]   
See also in sourсe #XX -- [ Pg.2 ]

See also in sourсe #XX -- [ Pg.2 ]




SEARCH



Pressure reduced

© 2024 chempedia.info