Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Redox reactions number

The situation at this stage is that both equations are completely balanced with respect to atoms and charge. It is now necessary to recognize that there must be equal exchanges of electrons in a redox reaction numbers of electrons consumed must be equal to the numbers of electrons produced. The oxidation of 1 mol of Fe " produces 1 mol of electrons. The reduction of 1 mol of Mn04 requires 5 mol of electrons. This is accounted for by multiplying the iron half-reaction by 5 ... [Pg.156]

Fig. 13.13 (a) Discharge-charge curve vs. composition of monoclinic Li3V2(P04>3 cathode material recorded at C/20 rate, (b) Incremental capacity curve showing the three regions of the redox reaction. Numbers are the redox potential in volt... [Pg.518]

In the previous section we saw how voltammetry can be used to determine the concentration of an analyte. Voltammetry also can be used to obtain additional information, including verifying electrochemical reversibility, determining the number of electrons transferred in a redox reaction, and determining equilibrium constants for coupled chemical reactions. Our discussion of these applications is limited to the use of voltammetric techniques that give limiting currents, although other voltammetric techniques also can be used to obtain the same information. [Pg.527]

A number of electronic and photochemical processes occur following band gap excitation of a semiconductor. Figure 5 illustrates a sequence of photochemical and photophysical events and the possible redox reactions which might occur at the surface of the SC particle in contact with a solution. Absorption of light energy greater than or equal to the band gap of the semiconductor results in a shift of electrons from the valence band (VB) to... [Pg.400]

Electroanalytical chemistry is one of the areas where advantage of the unique properties of SAMs is clear, and where excellent advanced analytical strategies can be utilized, especially when coupled with more complex SAM architectures. There are a number of examples where redox reactions are used to detect biomaterials (357,358), and where guest—host chemistry has been used to exploit specific interactions (356,359). Ion-selective electrodes are an apphcation where SAMs may provide new technologies. Selectivity to divalent cations such as Cu " but not to trivalent ions such as Fe " has been demonstrated (360). [Pg.545]

A number of reductive procedures have found general applicability. a-Azidoketones may be reduced catalytically to the dihydropyrazines (80OPP265) and a direct conversion of a-azidoketones to pyrazines by treatment with triphenylphosphine in benzene (Scheme 55) has been reported to proceed in moderate to good yields (69LA(727)23l). Similarly, a-nitroketones may be reduced to the a-aminoketones which dimerize spontaneously (69USP3453279). The products from this reaction are pyrazines and piperazines and an intermolecular redox reaction between the initially formed dihydropyrazines may explain their formation. Normally, if the reaction is carried out in aqueous acetic acid the pyrazine predominates, but in less polar solvents over-reduction results in extensive piperazine formation. [Pg.185]

The cure reaction of structural acrylic adhesives can be started by any of a great number of redox reactions. One commonly used redox couple is the reaction of benzoyl peroxide (BPO) with tertiary aromatic amines. Pure BPO is hazardous when dry [39]. It is susceptible to explosion from shock, friction or heat, and has an autoignition temperature of 79°C. Water is a very effective stabilizer for BPO, and so the initiator is often available as a paste or a moist solid [40], The... [Pg.832]

The concept of oxidation number is used to simplify the electron bookkeeping in redox reactions. For a monatomic ion (e.g., Na+, S2 ), the oxidation number is, quite simply, the charge of the ion (+1, —2). In a molecule or polyatomic ion, the oxidation number of an element is a pseudo-charge obtained in a rather arbitrary way, assigning bonding electrons to the atom with the greater attraction for electrons. [Pg.87]

The driving force behind the spontaneous reaction in a voltaic cell is measured by the cell voltage, which is an intensive property, independent of the number of electrons passing through the cell. Cell voltage depends on the nature of the redox reaction and the concentrations of the species involved for the moment, we ll concentrate on the first of these factors. [Pg.485]

Nitrogen cannot have an oxidation number lower than —3, which means that when NH3 takes part in a redox reaction, it always acts as a reducing agent. Ammonia may be oxidized to elementary nitrogen or to a compound of nitrogen. An important redox reaction of ammonia is that with hypochlorite ion ... [Pg.560]

A redox reaction, therefore, is any reaction in which there are changes in oxidation numbers. [Pg.103]

K.9 For each of the following redox reactions, identify the substance oxidized and the substance reduced by the change in oxidation numbers. [Pg.108]

Balancing the chemical equation for a redox reaction by inspection can be a real challenge, especially for one taking place in aqueous solution, when water may participate and we must include HzO and either H+ or OH. In such cases, it is easier to simplify the equation by separating it into its reduction and oxidation half-reactions, balance the half-reactions separately, and then add them together to obtain the balanced equation for the overall reaction. When adding the equations for half-reactions, we match the number of electrons released by oxidation with the number used in reduction, because electrons are neither created nor destroyed in chemical reactions. The procedure is outlined in Toolbox 12.1 and illustrated in Examples 12.1 and 12.2. [Pg.604]

The sulfur-rich oxides S 0 and S 02 belong to the group of so-called lower oxides of sulfur named after the low oxidation state of the sulfur atom(s) compared to the best known oxide SO2 in which the sulfur is in the oxidation state +4. Sulfur monoxide SO is also a member of this class but is not subject of this review. The blue-green material of composition S2O3 described in the older literature has long been shown to be a mixture of salts with the cations S4 and Ss and polysulfate anions rather than a sulfur oxide [1,2]. Reliable reviews on the complex chemistry of the lower sulfur oxides have been published before [1, 3-6]. The present review deals with those sulfur oxides which contain at least one sulfur-sulfur bond and not more than two oxygen atoms. These species are important intermediates in a number of redox reactions of elemental sulfur and other sulfur compounds. [Pg.204]

Magnesium cations and oxide anions attract each other strongly, forming the ionic solid, MgO. Notice that in the balanced redox reaction there is no net change in the number of electrons two Mg atoms lose four electrons, and one O2 molecule gains four electrons. [Pg.1352]

To determine whether electrons are transferred in chemical reactions, chemists use a procedure that assigns an oxidation number (also known as an oxidation state) to each atom in each chemical species. In a redox reaction, electron transfer causes some of the atoms to change their oxidation numbers. Thus, we can identify redox reactions by noting changes in oxidation numbers. [Pg.1353]

The first reaction is a redox reaction because the oxidation number of carbon increases (oxidation), and that of iron decreases (reduction). [Pg.1356]

Although these reactions look similar, the redox reaction includes a pure element. Nearly all reactions involving pure elements are redox, because the oxidation number changes from zero to either a positive or a negative value. [Pg.1356]

The key to balancing complicated redox equations is to balance electrons as well as atoms. Because electrons do not appear in chemical formulas or balanced net reactions, however, the number of electrons transferred in a redox reaction often is not obvious. To balance complicated redox reactions, therefore, we need a procedure that shows the electrons involved in the oxidation and the reduction. One such procedure separates redox reactions into two parts, an oxidation and a reduction. Each part is a half-reaction that describes half of the overall redox process. [Pg.1358]

In any redox reaction, some species are oxidized and others are reduced. To reveal the number of electrons transferred, we must separate the oxidation and reduction parts. This is most easily accomplished by dividing the redox reaction into two half-reactions, one describing the oxidation and the other describing the reduction. In half-reactions, electrons appear as reactants or products. [Pg.1359]

Remember that the number of electrons transferred is not explicitly stated in a net redox equation. This means that any overall redox reaction must be broken down into its balanced half-reactions to determine n, the ratio between the number of electrons transferred and the stoichiometric coefficients for the chemical reagents. [Pg.1391]

The coefficients of any balanced redox equation describe the stoichiometric ratios between chemical species, just as for other balanced chemical equations. Additionally, in redox reactions we can relate moles of chemical change to moles of electrons. Because electrons always cancel in a balanced redox equation, however, we need to look at half-reactions to determine the stoichiometric coefficients for the electrons. A balanced half-reaction provides the stoichiometric coefficients needed to compute the number of moles of electrons transferred for every mole of reagent. [Pg.1397]

The last two decades have seen a growing interest in the mechanism of inorganic reactions in solution. Nowhere is this activity more evident than in the topic covered by this review the oxidation-reduction processes of metal complexes. This subject has been reviewed a number of times previously, notably by Taube (1959), Halpern (1961), Sutin (1966), and Sykes (1967). Other articles and books concerned, wholly or partly, with the topic include those by Stranks, Fraser , Strehlow, Reynolds and Lumry , Basolo and Pearson, and Candlin et al ° Important recent articles on the theoretical aspects are those by Marcus and Ruff. Elementary accounts of redox reactions are included in the books by Edwards , Sykes and Benson . The object of the present review is to provide a more detailed survey of the experimental work than has hitherto been available. [Pg.153]


See other pages where Redox reactions number is mentioned: [Pg.90]    [Pg.2409]    [Pg.95]    [Pg.107]    [Pg.23]    [Pg.146]    [Pg.512]    [Pg.516]    [Pg.113]    [Pg.473]    [Pg.40]    [Pg.403]    [Pg.401]    [Pg.507]    [Pg.87]    [Pg.88]    [Pg.463]    [Pg.260]    [Pg.852]    [Pg.3]    [Pg.105]    [Pg.960]    [Pg.964]    [Pg.220]    [Pg.89]    [Pg.1364]    [Pg.213]    [Pg.219]   


SEARCH



Oxidation Numbers and Redox Reactions

Oxidation numbers redox reactions

Oxidation-reduction reactions (redox numbers

Reaction number

Reactions numbering

© 2024 chempedia.info