Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Redox potential and

Nitric oxide and NjO are direct intermediates in the denitrification pathway, the reduction of NO3 to Nj. Reduction to Nj is often incomplete, so that both NjO and Nj are equally important end products of denitrification, the ratio of NjO/Nj production being determined by soil physical properties. For example, NjO is the main end-product in acid soils, whereas low redox potentials and high organic matter content favour the further reduction to Nitric... [Pg.71]

An effective method for localizing causes of redox potentials is to plot the total backbone and side chain contributions to ( ) per residue for homologous proteins as functions of the residue number using a consensus sequence, with insertions treated by summing the contribution of the entire insertion as one residue. The results for homologous proteins should be examined for differences in the contributions to ( ) per residue that correlate with observed redox potential differences. These differences can then be correlated with any other sequence-redox potential data for proteins that lack crystal or NMR structures. In addition, any sequences of homologous proteins that lack both redox potentials and structures should be examined, because residues important in defining the redox potential are likely to have semi-sequence conservation of a few key amino acid types. [Pg.407]

One example of a sequence determinant of redox potentials that has been identified in this manner is an Ala-to-Val mutation at residue 44, which causes a 50 mV decrease in redox potential (and vice versa) in the rubredoxins [68]. The mutation was identified because the sum of the backbone contributions to ( ) of residues 43 and 44 change by 40 mV due to an —0.5 A backbone shift away from the redox site. This example points out the importance of examining the backbone contributions. The corresponding site-specific mutants have confirmed both the redox potential shift [75] and the structural shift [75]. [Pg.407]

A second example is that of an Ala-to-Cys mutation, which causes the fonnation of a rare SH S hydrogen bond between the cysteine and a redox site sulfur and a 50 mV decrease in redox potential (and vice versa) in the bacterial ferredoxins [73]. Here, the side chain contribution of the cysteine is significant however, a backbone shift can also contribute depending on whether the nearby residues allow it to happen. Site-specific mutants have confirmed the redox potential shift [76,77] and the side chain conformation of cysteine but not the backbone shift in the case with crystal structures of both the native and mutant species [78] the latter can be attributed to the specific sequence of the ferre-doxin studied [73]. [Pg.407]

Cr(VI)] increase the rate by raising the potential of the alloy into the transpassive region, the converse applies in the acid (Fe2(S04)j test, since reduction of Fe to Fe during the test will result in a decrease in the redox potential and the whole sample will corrode with hydrogen evolution. [Pg.1039]

Triarylamines have been employed in arylene vinylene AB copolymers 38 by Horhold et al. using a Homer polycondensation route of aldehydes and ketones 36 with fois-phosphonate 37 (Scheme 1-12) 164]. Phenylamines have remarkably low redox potentials and their charge transport properties have been investigated extensively [65]. EL devices comprising triarylamines have demonstrated low driving voltages. [Pg.336]

Variamine blue (C.I. 37255). The end point in an EDTA titration may sometimes be detected by changes in redox potential, and hence by the use of appropriate redox indicators. An excellent example is variamine blue (4-methoxy-4 -aminodiphenylamine), which may be employed in the complexometric titration of iron(III). When a mixture of iron(II) and (III) is titrated with EDTA the latter disappears first. As soon as an amount of the complexing agent equivalent to the concentration of iron(III) has been added, pFe(III) increases abruptly and consequently there is a sudden decrease in the redox potential (compare Section 2.33) the end point can therefore be detected either potentiometrically or with a redox indicator (10.91). The stability constant of the iron(III) complex FeY- (EDTA = Na2H2Y) is about 1025 and that of the iron(II) complex FeY2 - is 1014 approximate calculations show that the change of redox potential is about 600 millivolts at pH = 2 and that this will be almost independent of the concentration of iron(II) present. The jump in redox potential will also be obtained if no iron(II) salt is actually added, since the extremely minute amount of iron(II) necessary is always present in any pure iron(III) salt. [Pg.320]

Chelant corrosion (chelant attack) Complexing of soluble Fe, Cu, and CU alloy ions. (Excess chelant and oxygen leads to change in redox potential and corrosion develops.)... [Pg.272]

Ultraviolet spectroscopy metal in water complexes, 2, 309 redox potentials and, 1,498 Ultraviolet-visible spectroscopy, 1, 243 Umbellicomplexone metallofluorescent indicator, 1. 558 Undecametallic complexes, 1, 167 Uni thiol chelating agent heavy metal poisoning, 6. 767 Unsaturated compounds hydrogenation... [Pg.241]

It is now 20 years since the first report on the electrochemistry of an electrode coated with a conducting polymer film.1 The thousands of subsequent papers have revealed a complex mosaic of behaviors arising from the multiple redox potentials and the large changes in conductivity and ion-exchange properties that accompany their electrochemistry. [Pg.549]

Similar effects are observed in the iron complexes of Eqs. (9.13) and (9.14). The charge on the negatively charged ligands dominates the redox potential, and we observe stabilization of the iron(iii) state. The complexes are high-spin in both the oxidation states. The importance of the low-spin configuration (as in our discussion of the cobalt complexes) is seen with the complex ions [Fe(CN)6] and [Fe(CN)6] (Fq. 9.15), both of which are low-spin. [Pg.179]

A general theory based on the quantitative treatment of the reaction layer profile exists for pure redox catalysis where the crucial function of the redox mediator is solely electron transfer and where the catalytic activity largely depends only on the redox potential and not on the structure of the catalyst This theory is consistent... [Pg.63]

Therefore, polysulfide ions play a major role in the global geological and biological sulfur cycles [1, 2]. In addition, they are reagents in important industrial processes, e.g., in desulfurization and paper production plants. It should be pointed out however that only sulfide, elemental sulfur and sulfate are thermodynamically stable under ambient conditions in the presence of water, their particular stabihty region depending on the redox potential and the pH value [3] ... [Pg.128]

Fig. 6. Schematic representation of the midpoint redox potentials and electron and protron balances relating the various active site states as detected by FTIR (65). Fig. 6. Schematic representation of the midpoint redox potentials and electron and protron balances relating the various active site states as detected by FTIR (65).
The analysis of thermodynamic data obeying chemical and electrochemical equilibrium is essential in understanding the reactivity of a system to be used for deposition/synthesis of a desired phase prior to moving to experiment and/or implementing complementary kinetic analysis tools. Theoretical and (quasi-)equilibrium data can be summarized in Pourbaix (potential-pH) diagrams, which may provide a comprehensive picture of the electrochemical solution growth system in terms of variables and reaction possibilities under different conditions of pH, redox potential, and/or concentrations of dissolved and electroactive substances. [Pg.85]

The sub-classification of the oxidising metal ions derives from overall reactivity, which is only crudely related to redox potential and is gauged largely with hindsight. [Pg.276]

These share tendencies to behave as one-equivalent oxidants with redox potentials in the range 1.0 to 2.0 V and to undergo hydrolysis in aqueous solution above pH 2. They form complexes with anions, e.g. sulphate, which make their reactivity dependent on the nature of the medium both from the point of redox potential and of ligand displacement (Table 11). [Pg.353]

The redox potential and the reactivity of this oxidation state depend strongly upon the anion (Table 11). Strong complexes are formed with SO ". Even in perchloric acid, hydrolysis and polymerisation greatly complicate kinetics. The co-ordination number of Ce(lV) in solution is not established . [Pg.355]

In order to realize the precise control of core/shell structures of small bimetallic nanoparticles, some problems have to be overcome. For example, one problem is that the oxidation of the preformed metal core often takes place by the metal ions for making the shell when the metal ions have a high-redox potential, and large islands of shell metal are produced on the preformed metal core. Therefore, we previously developed a so-called hydrogen-sacrificial protective strategy to prepare the bimetallic nanoparticles in the size range 1.5-5.5nm with controllable core/shell structures [132]. The strategy can be extended to other systems of bi- or multimetallic nanoparticles. [Pg.56]

Azo-bridged ferrocene oligomers also show a marked dependence on the redox potentials and IT-band characteristics of the solvent, as is usual for class II mixed valence complexes 21,22). As for the conjugated ferrocene dimers, 2 and 241 the effects of solvents on the electron-exchange rates were analyzed on the basis of the Marcus-Hush theory, in which the t/max of the IT band depends on (l/Dop — 1 /Ds), where Dop and Ds are the solvent s optical and static dielectric constants, respectively (155-157). However, a detailed analysis of the solvent effect on z/max of the IT band of the azo-bridged ferrocene oligomers, 252,64+, and 642+, indicates that the i/max shift is dependent not only on the parameters in the Marcus-Hush theory but also on the nature of the solvent as donor or acceptor (92). [Pg.74]

As shown in Table 1, the introduction of an electron-withdrawing group raises the redox potential and stabilizes the leuco against air oxidation. In one extreme case, this stabilization has become so efficient that leuco 13o is too stable to be oxidized back to the dye, thus severely limiting its usefulness as an imaging material. [Pg.72]

Table 1. Effect of Substituents on the Redox Potential and Reactivity of Thiazine Leuco Dyes... Table 1. Effect of Substituents on the Redox Potential and Reactivity of Thiazine Leuco Dyes...
Phenazine leucos until now are usually substituted at their 3 and 6 positions by amino groups due to the normal method of synthesis of the parent phenazine dyes. These types of leuco dyes are reactive. An alternative method of dye synthesis allows access to phenazine dyes with just one substituent at the 3-position.20 The resulting leuco dyes are called half diazine leucos. The loss of one exocyclic amino group leads to higher redox potential and results in less reactive leuco dyes, more useful in applications such as thermographic and photothermographic imaging, particularly Color Dry Silver. [Pg.85]


See other pages where Redox potential and is mentioned: [Pg.338]    [Pg.247]    [Pg.2131]    [Pg.2145]    [Pg.624]    [Pg.63]    [Pg.929]    [Pg.1033]    [Pg.1038]    [Pg.144]    [Pg.180]    [Pg.1059]    [Pg.448]    [Pg.124]    [Pg.75]    [Pg.458]    [Pg.220]    [Pg.1059]    [Pg.55]    [Pg.76]    [Pg.146]    [Pg.194]    [Pg.357]    [Pg.416]    [Pg.428]    [Pg.34]   
See also in sourсe #XX -- [ Pg.349 ]




SEARCH



Redox potentials

© 2024 chempedia.info