Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Redox reactions, catalysis

In contrast to oxidation in water, it has been found that 1-alkenes are directly oxidized with molecular oxygen in anhydrous, aprotic solvents, when a catalyst system of PdCl2(MeCN)2 and CuCl is used together with HMPA. In the absence of HMPA, no reaction takes place(100]. In the oxidation of 1-decene, the Oj uptake correlates with the amount of 2-decanone formed, and up to 0.5 mol of O2 is consumed for the production of 1 mol of the ketone. This result shows that both O atoms of molecular oxygen are incorporated into the product, and a bimetallic Pd(II) hydroperoxide coupled with a Cu salt is involved in oxidation of this type, and that the well known redox catalysis of PdXi and CuX is not always operalive[10 ]. The oxidation under anhydrous conditions is unique in terms of the regioselective formation of aldehyde 59 from X-allyl-A -methylbenzamide (58), whereas the use of aqueous DME results in the predominant formation of the methyl ketone 60. Similar results are obtained with allylic acetates and allylic carbonates[102]. The complete reversal of the regioselectivity in PdCli-catalyzed oxidation of alkenes is remarkable. [Pg.30]

In this example24 redox catalysis kinetics is governed partly by chemical reaction, i.e., the scission of C6H5S02CH3. For given concentrations of pyrene and sulphone at sweep rate v one can find values of klk/k2 from published graphs23 in the case of EC processes. [Pg.1016]

Redox catalysis appears also to be an elegant way to conduct alkylations. In this case the RX compound has to produce a free radical R which is sufficiently reactive toward the electron carrier A or its reduced form. Generally the mechanism, developed mainly for the case of alkyl halides, may be summarized as in reactions 25, 29-36. [Pg.1018]

A general theory based on the quantitative treatment of the reaction layer profile exists for pure redox catalysis where the crucial function of the redox mediator is solely electron transfer and where the catalytic activity largely depends only on the redox potential and not on the structure of the catalyst This theory is consistent... [Pg.63]

An irreversible reaction of the intermediate of a redox reaction will greatly facilitate redox catalysis by thermodynamic control. A good example is the reduction of the carbon halogen bond where the irreversible reaction is the cleavage of the carbon halogen bond associated, or concerted, with the first electron transfer -pEe... [Pg.67]

The reduction ofsec-, and /-butyl bromide, of tnins-1,2-dibromocyclohexane and other vicinal dibromides by low oxidation state iron porphyrins has been used as a mechanistic probe for investigating specific details of electron transfer I .v. 5n2 mechanisms, redox catalysis v.v chemical catalysis and inner sphere v.v outer sphere electron transfer processes7 The reaction of reduced iron porphyrins with alkyl-containing supporting electrolytes used in electrochemistry has also been observed, in which the electrolyte (tetraalkyl ammonium ions) can act as the source of the R group in electrogenerated Fe(Por)R. ... [Pg.248]

The ratio ARH/ARj (monoalkylation/dialkylation) should depend principally on the electrophilic capability of RX. Thus it has been shown that in the case of t-butyl halides (due to the chemical and electrochemical stability of t-butyl free radical) the yield of mono alkylation is often good. Naturally, aryl sulphones may also be employed in the role of RX-type compounds. Indeed, the t-butylation of pyrene can be performed when reduced cathodically in the presence of CgHjSOjBu-t. Other alkylation reactions are also possible with sulphones possessing an ArS02 moiety bound to a tertiary carbon. In contrast, coupling reactions via redox catalysis do not occur in a good yield with primary and secondary sulphones. This is probably due to the disappearance of the mediator anion radical due to proton transfer from the acidic sulphone. [Pg.1019]

The catalysis of hydrogen peroxide decomposition by iron ions occupies a special place in redox catalysis. This was precisely the reaction for which the concept of redox cyclic reactions as the basis for this type of catalysis was formulated [10-13]. The detailed study of the steps of this process provided a series of valuable data on the mechanism of redox catalysis [14-17]. The catalytic decomposition of H202 is an important reaction in the system of processes that occur in the organism [18-22]. [Pg.385]

In the case of cobalt ions, the inverse reaction of Co111 reduction with hydroperoxide occurs also rather rapidly (see Table 10.3). The efficiency of redox catalysis is especially pronounced if we compare the rates of thermal homolysis of hydroperoxide with the rates of its decomposition in the presence of ions, for example, cobalt decomposes 1,1-dimethylethyl hydroperoxide in a chlorobenzene solution with the rate constant kd = 3.6 x 1012exp(—138.0/ RT) = 9.0 x 10—13 s—1 (293 K). The catalytic decay of hydroperoxide with the concentration [Co2+] = 10 4M occurs with the effective rate constant Vff=VA[Co2+] = 2.2 x 10 6 s— thus, the specific decomposition rates differ by six orders of magnitude, and this difference can be increased by increasing the catalyst concentration. The kinetic difference between the homolysis of the O—O bond and redox decomposition of ROOH is reasoned by the... [Pg.392]

APPLICATION OF REDOX CATALYSIS TO FAST FOLLOW-UP REACTIONS... [Pg.125]

For the sake of comparison and mutual validation of methods for measuring large follow-up reaction rate constants, it is interesting to apply different methods to the same system. Such a comparison between high-scan-rate ultramicroelectrode cyclic voltammetry, redox catalysis, and laser flash photolysis has been carried out for the system depicted in Scheme 2.25, where methylacridan is oxidized in acetonitrile, generating a cation radical that is deprotonated by a base present in the reaction medium.20... [Pg.128]

One limitation of the redox catalysis method derives from the fact that when the follow-up is so fast as to thwart back electron transfer, the forward electron transfer becomes the rate-determining step, therefore preventing the derivation of kinetic information on the follow-up reaction. Even under these unfavorable conditions, the redox catalysis approach may still allow determination of the standard potential yB, provided that the intrinsic barrier for electron transfer is not too high. [Pg.129]

As shown in Section 2.2.7, chemical reactions may be triggered by electrons or holes from an electrode as illustrated by SrnI substitutions (Section 2.5.6). Instead of involving the electrode directly, the reaction may be induced indirectly by means of redox catalysis, as illustrated in Scheme 2.15 for an SrnI reaction. An example is given in Figure 2.30, in which cyclic voltammetry allows one to follow the succession of events involved in this redox catalysis of an electrocatalytic process. In the absence of substrate (RX) and of nucleophile (Nu-), the redox catalysis, P, gives rise to a reversible response. A typical catalytic transformation of this wave is observed upon addition of RX, as discussed in Sections 2.2.6 and 2.3.1. The direct reduction wave of RX appears at more negative potentials, followed by the reversible wave of RH, which is the reduction product of RX (see Scheme 2.21). Upon addition of the nucleophile, the radical R is transformed into the anion radical of the substituted product, RNu -. RNu -... [Pg.131]

FIGURE 2.30. Redox catalysis induction of Srn1 reactions. Cyclic voltammetry in liquid ammonia + 0.1 M KC1 at —40°C of (a) redox catalyis of the reductive cleavage of 2-chlorobenzonitrile, RX, by 4-cyanopyridine, P. The dotted reversible cyclic voltammogram corresponds to P in the absence of RX. The solid line shows the catalytic increase of the current, (b) Transformation of the voltammogram upon addition of the nucleophile PhS. Adapted from Figure 1 in reference 23, with permisison from the American Chemical Society. [Pg.132]

The very fact that chemical catalysis involves the formation of an adduct opens up possibilities of selectivity, particularly stereoselectivity, that are absent in redox catalysis. Several examples of homogeneous chemical catalysis are described in the following section, illustrating the improvements that can be achieved when passing from redox to chemical catalysis. It remains true that redox catalysis has several useful applications that have already been discussed, such as kinetic characterization of fast follow-up reactions (Section 2.3) and determination of the redox properties of transient radicals (Section 2.6.4). [Pg.254]

Chapters 4 and 5 are devoted to molecular and biomolecular catalysis of electrochemical reactions. As discussed earlier, molecular electrochemistry deals with transforming molecules by electrochemical means. With molecular catalysis of electrochemical reactions, we address the converse aspect of molecular electrochemistry how to use molecules to produce better electrochemistry. It is first important to distinguish redox catalysis from chemical catalysis. In the first case, the catalytic effect stems from the three-dimensional dispersion of the mediator (catalyst), which merely shuttles the electrons between the electrode and the reactant. In chemical catalysis, there is a more intimate interaction between the active form of the catalyst and the reactant. The differences between the two types of catalysis are illustrated by examples of homogeneous systems in which not only the rapidity of the catalytic process, but also the selectivity problems, are discussed. [Pg.502]

Immobilizing the catalyst on the electrode surface is useful for both synthetic and sensors applications. Monomolecular coatings do not allow redox catalysis, but multilayered coatings do. The catalytic responses are then functions of three main factors in addition to transport of the reactant from the bulk of the solution to the film surface transport of electrons through the film, transport of the reactant in the reverse direction, and catalytic reaction. The interplay of these factors is described with the help of characteristic currents and kinetic zone diagrams. In several systems the mediator plays the role of an electron shuttle and of a catalyst. More interesting are the systems in which the two roles are assigned to two different molecules chosen to fulfill these two different functions, as illustrated by a typical experimental example. [Pg.502]

The reduction of organic halides in the presence of aromatic hydrocarbons, the subject of detailed kinetic studies, provide rate constants for the homogeneous ET [147-150] and the follow-up reaction [151]. The theoretical basis for this kind of experiment ( homogeneous redox catalysis ) was laid by Saveant s group in a series of papers during the years 1978-80 [152-157]. Homogeneous ET also plays an important role in the protonation of anion radicals [158]. [Pg.110]


See other pages where Redox reactions, catalysis is mentioned: [Pg.325]    [Pg.2538]    [Pg.325]    [Pg.2538]    [Pg.1016]    [Pg.1019]    [Pg.1021]    [Pg.62]    [Pg.63]    [Pg.70]    [Pg.1016]    [Pg.1021]    [Pg.472]    [Pg.125]    [Pg.151]    [Pg.157]    [Pg.384]    [Pg.79]    [Pg.125]    [Pg.127]    [Pg.145]    [Pg.177]    [Pg.179]    [Pg.191]    [Pg.258]    [Pg.500]    [Pg.114]   
See also in sourсe #XX -- [ Pg.125 , Pg.126 , Pg.127 , Pg.128 , Pg.129 , Pg.130 , Pg.131 ]




SEARCH



Catalysis of Redox Reactions by Surfaces

Catalysis of redox reactions

Heterogeneous Catalysis of Redox Reactions

Reactions metals, heterogeneous redox catalysis

Redox Catalysis in the H -Evolution Reaction from Water

Redox catalysis

© 2024 chempedia.info