Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Recrystallization cooling

When the electrolysis is finished, calculate the number of coulombs passed and the theoretical maximum yield of perchlorate in moles. Measure out an equal number of moles of potassium choride, in the form of a saturated (4M) solution, and stir this into the warm electrolyte. A fine perchlorate precipitate appears. Cool in ice and filter the potassium perchlorate on a small Buchner funnel. Wash with a little ice-cold water and suck as dry as possible then dissolve the crude product (which contains some chlorate) in 150 ml of hot water and recrystallize, cooling to below 10° before filtering off the crystals. Wash the crystals wdth about 50 ml of ice-cold 50 per cent alcohol, suck dry, and dry in air. The yield of recrystallized salt, based on the current consumption, is about 60 per cent. [Pg.173]

Once the reaction mix has cooled after reflux, 500mL of room temperature dHsO can be added and the whole solution extracted with DCM. The DCM layer is separated and the solvent removed by distillation to give the li-nitropropene as an oil of all things. This oil can then be recrystallized in hot methanol just like the crystalline form was [38]. [Pg.130]

Phenylpropanolamine. - With catalyst prepared as previously described from 0.5g of palladium chloride and 3g of charcoal, it was possible to reduce two portions of 9.8g of isonitrosopropio-phenone (0.06 mol), dissolved in 150 cc. of absolute alcohol containing 7. Og of hydrogen chloride, to phenylpropanolamine in from 145 - 190 minutes with yields of the isolated chloride from 9.4g to 11. Og, or 84 to 98% of the theoretical. After recrystallization from absolute alcohol the salt melted at 191°. The free base was obtained by treating an aqueous solution of the hydrochloride with alkali on cooling, the liberated amino alcohol solidified and after recrystallization from water melted at 103°."... [Pg.203]

Bromo-2-nitrophenylacetic acid (26 g, 0.10 mol) was dissolved in a mixture of 50% HjSO (400 ml) and ethanol (600 ml) and heated to 90°C. Over a period of 1 h, zinc dust (26.2 g, 0.40 mol) was added. slowly and then heating was continued for 2 h. The excess ethanol was removed by distillation. The solution was cooled and filtered. The filtrate was extracted with EtOAc. The filtered product and extract were combined, washed with 5% NaCOj and brine and then dried (MgSO ). The solvent was removed in vacuo and the residue recrystallized from methanol to give 20.5 g (97% yield) of the oxindole. [Pg.19]

A stirred solution of o-methylpivalanilide (50 mmol) in dry THE (100 ml) was maintained at 15°C under a nitrogen atmosphere. A 1.5 M solution of n-butyllithium in hexane (3 equiv.) was added dropwise. The solution was then maintained at room temperature for 16h. The solution was cooled in an ice-bath and treated with 2 N HCl (60 ml). The organic layer was separated and the aqueous layer was further extracted with benzene. The combined layers were dried (MgS04). The product was obtained in 87% yield and recrystallized from ether-cyclohexane. [Pg.29]

The cinnamate ester prepared as above (23.2 g. 79 mmol) was added as a solid slowly to refluxing xylene (500 ml) over a period of 3 h at a rate that prevented accumulation of unreacted azidocinnamate in the solution (monitored by gas evolution through a gas bubbler). The solution was refluxed for an additional 2 h after gas evolution ceased. The reaction mixture was cooled and the solvent removed in vacuo. The residue was recrystallized from methanol to give pure product (20.7 g, 99% yield). [Pg.47]

Phenyl-3-oxopropanoic acid (25 mmol) and EtjN (87.5 mmol) were dissolved in THF (150 ml) and cooled to —40°C. Ethyl chloroformate (27.5 mmol) was added dropwise to this solution and then the reaction mixture was stirred for 30 min at —20°C. Di-n-hexylamine (27.5 mmol) was added to the suspension and it was stirred at room temperature for an additional hour. The reaction mixture was diluted with water (100 ml) and extracted with ether (400 ml). The extract was washed with aq. 5% HCl (100 ml) and brine (2 X 100 ml) and dried over NajSO. The crude amide was obtained by removal of the solvent in vacuo and phenylhydrazine (25 mmol) was added. The mixture was heated to 100°C for 30 min. The residue was held in vacuo to remove the water formed and then powdered ZnCl2 (125 mmol) was added. The mixture was heated at 170"C with manual stirring for 5 min. The cooled residue was dissolved in acetone (100 ml) and diluted with ether (500 ml). Water (100 ml) was added. The organic layer was separated and washed successively with 5% aq. HCl (100 ml) and brine (2 x 100 ml) and dried over NajSO. The solvent was removed in vacuo, and the residue was recrystallized from EtOAc-hexane. The yield was 79%. [Pg.62]

The hydrazone prepared above (153 g. 0.42 mol) was heated at reflux for 5 h in 5% H2SO4 (750ml). The solution was cooled to 4 "C and after 12h the precipitate was collected by filtration. Recrystallization from MeOH/water (70 30) gave the product (145 g, 99%). [Pg.63]

A solution of 2,3-dibromo-5-methoxyaniline (32 g, 0.17 mol) in CHjClj (300 ml) was stirred and cooled in an icc bath. Boron trichloride (1 M in CH2CI2, 180 ml, 0.18 mol), chloroacetonitrile (14.3 g, 0.19 mol) and TiC (1 M in CH CIj, 190ml, 0.19 mol) were added. The resulting mixture was refluxed for 1.5 h. The solution was cooled to room temperature and poured carefully on to a mixture of icc and 20% aq. HCl (700 ml). The organic layer was separated and the CH Clj removed by distillation. The residue was heated to 90°C on a water bath for 30 min. The solution was cooled and the solid collected by filtration. It was partitioned between ether (1.41) and 1 N NaOH (500 ml). The ether layer was washed with brine, dried over Na2S04 and evaporated. The residue was recrystallized from ethanol to give 2-amino-3,4-dibromo-6-methoxy-a-chloroacetophenone (55 g) in 90% yield. [Pg.76]

The above product (24 g, 0.067 mol) was dissolved in 90 10 dioxane-water (300 ml) and sodium borohydride (92.5 g, 0.067 mol) was added. The mixture was refluxed for 4h. The cooled solution was poured into 0.1 N HCl (1.11). A solid precipitated and was collected by filtration, dried and recrystallized from ether hexane to give 6,7-dibromo-4-methoxyindole (18.5 g, 90%). [Pg.77]

A solution of 6-bromoindole (O.lOmol) in toluene (200 ml) was treated with Pd(PPh3)4 (5mol%) and stirred for 30 min. A solution of 4-fluorophenyl-boronic acid (0.25 M, 0.15 mol) in abs. EtOH was added, followed immediately by sal aq. NaHCOj (10 eq.). The biphasic mixture was refluxed for several hours and then cooled to room temperature. The reaction mixture was poured into sat. aq. NaCl (200 ml) and the layers separated. The aq. layer was extracted with additional EtOAc (200 ml) and the combined organic layers dried (Na2S04), filtered and concentrated in vacuo. The solution was filtered through silica gel using hexane-CHjCl -hexanc for elution and evaporated. Final purification by recrystallization gave the product (19 g, 90%). [Pg.143]

A solution of 1.05 M diborane in THF (25 ml, 26 mraol) was added slowly to a stirred suspension of 3-acetyl-5-hydroxy-2-methylindole (1.0 g, 5.3 mmol) in THF (10 ml). After hydrogen evolution ceased, the mixture was heated at reflux for I h, cooled and poured into acetone (75 ml). The mixture was heated briefly to boiling and then evaporated in vacuo. The residue was heated with methanol (50ml) for 20min. The solution was concentrated and 3NHC1 (40ml) was added. The mixture was extracted with ether and the extracts dried (MgSO ) and evaporated to yield a yellow oil. Vacuum sublimation or recrystallization yielded pure product (0.76 g, 82%). [Pg.151]

Melting and recrystallization behavior of virgin PTEE has been studied by dsc (64). A quantitative relationship was found between and the heat of crystallization (A/T) in the molecular weight range of 5.2 x 10 to 4.5 X 1 0, where is heat of crystallization in J/g, which is independent of cooling... [Pg.350]

The manufacture of silver nitrate for the preparation of photographic emulsions requires silver of very high purity. At the Eastman Kodak Company, the principal U.S. producer of silver nitrate, 99.95% pure silver bars are dissolved in 67% nitric acid in three tanks coimected in parallel. Excess nitric acid is removed from the resulting solution, which contains 60—65% silver nitrate, and the solution is filtered. This solution is evaporated until its silver nitrate concentration is 84%. It is then cooled to prepare the first crop of crystals. The mother Hquor is purified by the addition of silver oxide and returned to the initial stages of the process. The cmde silver nitrate is centrifuged and recrystallized from hot, demineralized water. Equipment used in this process is made of ANSI 310 stainless steel (16). [Pg.89]

Additions of cadmium (0.05—1.3%) to copper raise the recrystallization temperature and improve the mechanical properties, especially in cold-worked conditions, with relatively Htde reduction in conductivity. Copper containing 0.07% cadmium is used in automotive cooling fins, heavy-duty radiators, motor commutators, and electric terminals. [Pg.389]

Recovery Process. The process for making sodium sulfate [7757-82-6] is different at each faciUty extracting it from brine. One step common to all facihties is a cooling step to form Glauber s salt followed by a purification and recrystallization step to form anhydrous sodium sulfate. [Pg.413]


See other pages where Recrystallization cooling is mentioned: [Pg.243]    [Pg.243]    [Pg.141]    [Pg.174]    [Pg.271]    [Pg.52]    [Pg.220]    [Pg.12]    [Pg.12]    [Pg.13]    [Pg.19]    [Pg.128]    [Pg.146]    [Pg.210]    [Pg.244]    [Pg.343]    [Pg.520]    [Pg.520]    [Pg.434]    [Pg.16]    [Pg.150]    [Pg.497]    [Pg.89]    [Pg.194]    [Pg.207]    [Pg.341]    [Pg.392]    [Pg.393]    [Pg.395]    [Pg.395]    [Pg.468]    [Pg.121]    [Pg.499]    [Pg.426]    [Pg.1141]   
See also in sourсe #XX -- [ Pg.98 ]

See also in sourсe #XX -- [ Pg.98 ]




SEARCH



Recrystallization

Recrystallizations

Recrystallized

© 2024 chempedia.info