Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Recovery separation system

It is often possible to use the energy system inherent in the process to drive the separation system for us by improved heat recovery and in so doing carry out the separation at little or no increase in operating costs. [Pg.287]

If a neutral chelate formed from a ligand such as acetylacetone is sufficiently soluble in water not to precipitate, it may stiH be extracted into an immiscible solvent and thus separated from the other constituents of the water phase. Metal recovery processes (see Mineral recovery and processing), such as from dilute leach dump Hquors, and analytical procedures are based on this phase-transfer process, as with precipitation. Solvent extraction theory and many separation systems have been reviewed (42). [Pg.393]

The application of polymer monoliths in 2D separations, however, is very attractive in that polymer-based packing materials can provide a high performance, chemically stable stationary phase, and better recovery of biological molecules, namely proteins and peptides, even in comparison with C18 phases on silica particles with wide mesopores (Tanaka et al., 1990). Microchip fabrication for 2D HPLC has been disclosed in a recent patent, based on polymer monoliths (Corso et al., 2003). This separation system consists of stacked separation blocks, namely, the first block for ion exchange (strong cation exchange) and the second block for reversed-phase separation. This layered separation chip device also contains an electrospray interface microfabricated on chip (a polymer monolith/... [Pg.152]

One of the most important advantages of the bio-based processes is operation under mild conditions however, this also poses a problem for its integration into conventional refining processes. Another issue is raised by the water solubility of the biocatalysts and the biocatalyst miscibility in oil. The development of new reactor designs, product or by-product recovery schemes and oil-water separation systems is, therefore, quite important in enabling commercialization. Emulsification is thus a necessary step in the process however, it should be noted that highly emulsified oil can pose significant downstream separation problems. [Pg.6]

Membrane gas-separation systems have found their first applications in the recovery of organics from process vents and effluent air [5]. More than a hundred systems have been installed in the past few years. The technique itself therefore has a solid commercial background. Membranes are assembled typically in spiral-wound modules, as shown in Fig. 7.3. Sheets of membrane interlayered with spacers are wound around a perforated central pipe. The gas mixture to be processed is fed into the annulus between the module housing and the pipe, which becomes a collector for the permeate. The spacers serve to create channels for the gas flow. The membranes separate the feed side from the permeate side. [Pg.107]

It has long been known in the industry that increasing the number of stages In a multistage separation system vill improve recovery in terms of barrels of oil per unit volume of well stream. [Pg.82]

Process Synthesis, an important research area within chemical process design, has triggered during the last three decades a significant amount of academic research work and industrial interest. Extensive reviews exist for the process synthesis area as well as for special classes of problems (e.g., separation systems, heat recovery systems) and for particular approaches (e.g., insights-based approach, optimization approach) applied to process synthesis problems. These are summarized in the following ... [Pg.225]

Having described the overall process system, its three main interactive components (i.e., the chemical plant, the heat recovery system and the utility system), as well as the three subsystems of the chemical plant (i.e., the reactor system, the separation system, and the recycle system) we can now define the process synthesis problem. [Pg.229]

Since helium and neon have boiling points considerably below that of nitrogen, these gases will collect on the nitrogen side of the condenser-reboiler associated with the double-column air separation system. Recovery of these gases is accomplished by periodic venting of a small portion of the gas from the dome of the condenser and transfer to a small condenser-rectifier refrigerated with... [Pg.180]

Off-line dicarbamate solvent extraction and ICP-MS analysis [317] provided part-per-trillion detection limits Cd (0.2 ppt), Co (0.3 ppt), Cu (3 ppt), Fe (21 ppt), Ni (2 ppt), Pb (0.5 ppt), and Zn (2 ppt). Off-line matrix removal and preconcentration using cellulose-immobilized ethylenediaminetetraacetic acid (EDTA) have also been reported [318]. Transition metals and rare earth elements were preconcentrated and separated from the matrix using on-line ion chromatography with a NTA chelating resin [319]. Isotope-dilution-based concentration measurement has also been used after matrix separation with a Chelex ion-exchange resin [320]. The pH, flow rate, resin volume, elution volume, and time required for isotope equilibration were optimized. A controlled-pore glass immobilized iminodiacetate based automated on-line matrix separation system has also been described [321]. Recoveries for most metals were between 62% and 113%. [Pg.134]

As a strategy, the synthesis procedure should start with vapor recovery and gas separations, from which some components are sent to liquid separations. For the same reason, the solid-separation system should be placed in the second place. Note that the subsystems of gas and solid separations are largely uncoupled. As a result, the liquid-separation system should is handled the last. [Pg.52]

Gas-separation manager includes both vapor recovery and gas-separation systems. Vapor recovery handles the recovery of valuable condensable components from a gas stream or the removal of undesired components since they are corrosive, toxic, polymerizable, have a bad odor, etc. Gas separation deals with the recovery of recycled gaseous reactants, as well as with the delivery of purified products and byproducts. Douglas [6] recommends the following heuristics for placing the vapor-recovery system ... [Pg.64]

Such approaches underpin the current popularity of RP-HPLC procedures for the purification of synthetic or recombinant polypeptides at the production scale, or analogous approaches employed in the HP-IEX of commercially valuable proteins. However, in some cases when linear scale-up methods are applied to higher molecular weight polypeptides or proteins, their biological activity may be lost due to unfavorable column residency effects and sorbent surface area dependencies. It is thus mandatory that the design and selection of preparative separation system specifically address the issues of recovery of bioactivity. Often some key parameters can be easily controlled, i.e., by operating the preparative separation at lower temperatures such a 4°C, or by minimizing column residency times. [Pg.158]

CO, are toxic. To include the effects of pollution control at this early design stage, it is assumed that unreacted raw material, byproducts, and unrecovered product exiting the reactor are incinerated to C02 with 99% destruction efficiency with the remaining 1% released to the environment. The recovery of MA in the separation system is assumed to be 99%, with the remaining 1% going to pollution control. [Pg.250]

Begin with a single solvent, if possible, since it simplifies the separation system and permits economical solvent recovery. [Pg.201]

These results on amino acid solubilisation in reversed micelle solutions have indicated clearly that such systems could be useful for the recovery, separation and concentration of small, charged biological molecules from aqueous media. Furthermore, they have shed some light on the role that hydrophobic interactions will play in the solubilisation of more complex molecules such as proteins, which have a distribution of polar and nonpolar amino acid residues over their surfaces. [Pg.182]


See other pages where Recovery separation system is mentioned: [Pg.261]    [Pg.261]    [Pg.76]    [Pg.444]    [Pg.355]    [Pg.1543]    [Pg.212]    [Pg.114]    [Pg.547]    [Pg.224]    [Pg.148]    [Pg.53]    [Pg.156]    [Pg.509]    [Pg.595]    [Pg.444]    [Pg.434]    [Pg.231]    [Pg.14]    [Pg.110]    [Pg.349]    [Pg.157]    [Pg.420]    [Pg.22]    [Pg.64]    [Pg.65]    [Pg.67]    [Pg.69]    [Pg.439]    [Pg.541]    [Pg.158]    [Pg.178]    [Pg.57]    [Pg.172]   
See also in sourсe #XX -- [ Pg.51 ]




SEARCH



Recovery separation

Recovery system

Separable systems

© 2024 chempedia.info