Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reactions dealumination

Catalytic Properties. In zeoHtes, catalysis takes place preferentially within the intracrystaUine voids. Catalytic reactions are affected by aperture size and type of channel system, through which reactants and products must diffuse. Modification techniques include ion exchange, variation of Si/A1 ratio, hydrothermal dealumination or stabilization, which produces Lewis acidity, introduction of acidic groups such as bridging Si(OH)Al, which impart Briimsted acidity, and introducing dispersed metal phases such as noble metals. In addition, the zeoHte framework stmcture determines shape-selective effects. Several types have been demonstrated including reactant selectivity, product selectivity, and restricted transition-state selectivity (28). Nonshape-selective surface activity is observed on very small crystals, and it may be desirable to poison these sites selectively, eg, with bulky heterocycHc compounds unable to penetrate the channel apertures, or by surface sdation. [Pg.449]

In view of catalytic potential applications, there is a need for a convenient means of characterization of the porosity of new catalyst materials in order to quickly target the potential industrial catalytic applications of the studied catalysts. The use of model test reactions is a characterization tool of first choice, since this method has been very successful with zeolites where it precisely reflects shape-selectivity effects imposed by the porous structure of tested materials. Adsorption of probe molecules is another attractive approach. Both types of approaches will be presented in this work. The methodology developed in this work on zeolites Beta, USY and silica-alumina may be appropriate for determination of accessible mesoporosity in other types of dealuminated zeolites as well as in hierarchical materials presenting combinations of various types of pores. [Pg.217]

Acidic micro- and mesoporous materials, and in particular USY type zeolites, are widely used in petroleum refinery and petrochemical industry. Dealumination treatment of Y type zeolites referred to as ultrastabilisation is carried out to tune acidity, porosity and stability of these materials [1]. Dealumination by high temperature treatment in presence of steam creates a secondary mesoporous network inside individual zeolite crystals. In view of catalytic applications, it is essential to characterize those mesopores and to distinguish mesopores connected to the external surface of the zeolite crystal from mesopores present as cavities accessible via micropores only [2]. Externally accessible mesopores increase catalytic effectiveness by lifting diffusion limitation and facilitating desorption of reaction products [3], The aim of this paper is to characterize those mesopores by means of catalytic test reaction and liquid phase breakthrough experiments. [Pg.217]

In this work we modified an HZSM-5 zeolite through different dealumination treatments and partial ionic exchange with Cs+ in an attempt to modulating the zeolite acidity and thus to improving its behavior for the MDA reaction. [Pg.321]

In all cases, the high activity and selectivity of this zeolite as compared to other three-dimensional zeolites, such as beta or dealuminated Faujasite zeolite, is related to the easier and/or faster diffusion of the products and to minimization of undesired consecutive reactions. [Pg.333]

These data clearly indicate that the NiMCM-36 catalyst exhibits very interesting properties for ethylene oligomerization, by comparison with the microporous NiMCM-22 zeolite at both reaction temperatures (70 and 150°C, respectively). Compared with other catalysts, the NiMCM-36 behaviour is intermediate between Ni-exchanged dealuminated Y zeolite and Ni-exchanged mesoporous materials. Taking into account that the amount of Ni2+ sites is near the same for all samples (Table 1), in order to explain these differences in catalytic behaviors, two mains categories of properties could be considered (i) the concentration and strength of acid and nickel sites and (ii) the diffusional properties (determined by the size and the architecture of pores). [Pg.387]

The zeolite-catalyzed glucosylation of n-butanol was also investigated by Chapat et al.38 using dealuminated HY faujasites. The thermodynamically more-stable butyl glucopyranosides were predictably the final reaction products, resulting from... [Pg.35]

Besides di- and poly-saccharides, zeolites have been applied for hydrolysis of simple glycosides as described by Le Strat and Morreau.132 Methyl a- and /i-D-glucopyrano-sides were treated with water in the presence of dealuminated HY faujasite with an Si/Al ratio of 15, at temperatures ranging between 100 and 150 °C. It was observed that the reaction rate for the (i glycoside was about 5-6 times higher than that for the oc anomer, a result that might arise from the shape-selective properties of the zeolite and stereoelectronic effects on the surface of the solid. [Pg.70]

Thus, dealumination may be effected by reaction with SiCli, the reaction being postulated to occur as in equation [10]. [Pg.402]

Seeding technique. Al-free Ti-beta obtained by use of dealuminated zeolite-beta seeds Fluoride method. Al-free Ti-beta synthesis from a reaction mixture containing TEAOH and fluoride ions (HF) at near-neutral pH. Gel composition Ti02 60SiO2 32.9NEt4OH 32.9HF 20H2O 457.5 H20. Crystallization at 413 K with rotation of the autoclave (60 rpm)... [Pg.175]

An interesting variation on sulfated metal oxide type catalysts was presented by Sun et al. (198), who impregnated a dealuminated zeolite BEA with titanium and iron salts and subsequently sulfated the material. The samples exhibited a better time-on-stream behavior in the isobutane/1-butene alkylation (the reaction temperature was not given) than H-BEA and a mixture of sulfated zirconia and H-BEA. The product distribution was also better for the sulfated metal oxide-impregnated BEA samples. These results were explained by the higher concentration of strong Brpnsted acid sites of the composite materials than in H-BEA. [Pg.290]

Figure 1. Reaction mechanism for hydrothermal dealumination and stabilization of Y zeolites. Figure 1. Reaction mechanism for hydrothermal dealumination and stabilization of Y zeolites.
Reactions with acids. Hydrochloric acid was used in the dealumination of clinoptilolite (1), erionite (14) and mor-denite (2,3,15,92). In the case of Y zeolite, dealumination with mineral acids was successful only after conversion of the zeolite into the ultrastable form (vide infra). Barrer and Makki (1) were the first to propose a mechanism for the removal of aluminum from mordenite by mineral acids. It involves the extraction of aluminum in a soluble form and its replacement by a nest of four hydroxyl groups as follows ... [Pg.161]

Reactions with salts. This procedure is more limited and is illustrated by the use of chromium chloride solutions under reflux for partial dealumination of Y and X zeolites (19), as well as of erionite (20). It is assumed that in this case a partial substitution of chromium for aluminum takes place, leading to the formation of Si-O-Cr bonds in the framework (19). Up to 40 percent of aluminum was removed by this method. Zeolites can also be dealuminated with solutions of ammonium fluorosilicate (107). [Pg.161]

Reaction with chelating agents. Such reactions have been used primarily for partial dealumination of Y zeolites. In 1968, Kerr (8,21) reported the preparation of aluminum-deficient Y zeolites by extraction of aluminum from the framework with EDTA. Using this method, up to about 50 percent of the aluminum atoms was removed from the zeolite in the form of a water soluble chelate, without any appreciable loss in zeolite crystallinity. Later work (22) has shown that about 80 percent of framework aluminum can be removed with EDTA, while the zeolite maintains about 60 to 70 percent of its initial crystallinity. Beaumont and Barthomeuf (23-25) used acetylacetone and several amino-acid-derived chelating agents for the extraction of aluminum from Y zeolites. Dealumination of Y zeolites with tartaric acid has also been reported (26). A mechanism for the removal of framework aluminum by EDTA has been proposed by Kerr (8). It involves the hydrolysis of Si-O-Al bonds, similar to the scheme in Figure 1A, followed by formation of a soluble chelate between cationic, non-framework aluminum and EDTA. [Pg.162]

More recently, dealumination was achieved by fluorination of zeolites at ambient temperature with a dilute fluorine-in-air stream, followed by high-temperature calcination (102). The suggested reaction mechanism involves the formation of different aluminum-fluorine compounds along with zeolites containing hydroxyl and fluorine nests. During the high-temperature calcination, it is assumed that silica insertion occurs, similar to the scheme in Figure IB. [Pg.162]

The reaction mechanism during the thermal treatment step is similar to the one already described for thermal dealumination. High temperatures and steam will enhance the expulsion... [Pg.162]

A modification of the above cyclic method has proved more effective in the dealumination of Y zeolites. An almost aluminum-free, Y-type structure was obtained by using a process involving the following steps a) calcination, under steam, of a low-soda (about 3 wt.% Na O), ammonium exchanged Y zeolite b) further ammonium exchange of the calcined zeolite c) high-temperature calcination of the zeolite, under steam d) acid treatment of the zeolite. Steps a) and c) lead to the formation of ultrastable zeolites USY-A and USY-B, respectively. Acid treatment of the USY-B zeolite can yield a series of aluminum-deficient Y zeolites with different degrees of dealumination, whose composition depends upon the conditions of the acid treatment. Under severe reaction conditions (5N HC1, 90°C) an almost aluminum-free Y-type structure can be obtained ("silica-faujasite") (28,29). [Pg.165]

Preparation method. Mild acid-dealumination will generally result in a more active material than the parent zeolite due to (a) removal of amorphous materials from the zeolite channels, thus lowering the diffusion resistance for the reacting molecules and (b) generation of stronger acid sites during the dealumination process, which enhances the catalytic activity of the zeolite for acid-catalyzed reactions. However, thermal dealumination will generally result in less... [Pg.194]

Separation of isomaltose from high sugar concentrated enzyme reaction mixture by dealuminated beta-zeolite. Sep. Purif. TechnoL, 38,129. [Pg.201]

Cumene was originally produced with SPA- [57], then FAU- or BEA-based catalysts, and most recently MWW. While most industrial processes use MWW-based catalysts [58], Dow and KeUog co-developed a dealuminated MOR based process called 3-DDM [59]. With each new process generation, conversion and selectivity to cumene has increased. These processes and the chemistry behind them are covered in Section 15.4. As the use of zeoHtes for alkylation reactions in industry increased, so did the study of the reaction and how the zeoHte topology affects the mechanism and selectivity to products, so that now many zeotypes are tested for aromatic alkylation as a way of figuring out a new structure s reaction pattern. Therefore, many zeotypes have been used to catalyze aromatic alkylation (Tables 12.9-12.11). [Pg.369]

Likewise thioacetals have been prepared in yields between 60 to >99% by treatment of aldehydes or ketones with 1,2-ethanethiol in the presence of Zeolite HSZ-360, a dealuminated Y-Zeolite [101]. Many other functional groups like al-kenes, tetrahydropyranyl and nitriles are tolerated under the mild reaction conditions. [Pg.220]

When 1,2-dichlorobenzene in hydrogen-saturated deionized water was exposed to a slurry of palladium catalyst (1%) at room temperature, benzene formed via the intermediate chlorobenzene. The reaction rate decreased in the order of MCM-41 (mesoporous oxide having a silicon aluminum ratio of 35) > alumina > Y (dealuminated zeolite having a silicon aluminum ratio of 15). It appeared the reaction rate was directly proportional to the surface area of the support catalyst used (Schiith and Reinhard, 1997). [Pg.392]

In 1994, Laketic et al. investigated for the first time the hydrolysis of sucrose over dealuminated-Y-zeolites with different Si/Al ratio (27, 55, 110). The best activity was observed with the highest dealuminated zeolite (Si/Al = 110, rate constant = 1.28 L moE min at 30°C [32]). As expected, the reaction obeys first order kinetics. Up to 90% conversion was obtained after 9 h of reaction at 70°C. Interestingly, little side-products were formed as the selectivity in glucose was higher than 90%. [Pg.68]


See other pages where Reactions dealumination is mentioned: [Pg.449]    [Pg.96]    [Pg.271]    [Pg.272]    [Pg.86]    [Pg.105]    [Pg.285]    [Pg.323]    [Pg.69]    [Pg.70]    [Pg.287]    [Pg.162]    [Pg.168]    [Pg.183]    [Pg.195]    [Pg.105]    [Pg.106]    [Pg.235]    [Pg.404]    [Pg.453]    [Pg.454]    [Pg.558]    [Pg.559]    [Pg.18]    [Pg.163]    [Pg.248]   
See also in sourсe #XX -- [ Pg.72 ]




SEARCH



Dealumination

Model dealumination reaction

© 2024 chempedia.info