Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reaction reactive intermediates

In other types of bimolecular reactions reactive intermediates are trapped with various additives. These synthesic possibilities have been studied with phthalic anhydride 24>. The compound decomposes in two steps to dehydrobenzene which in turn dimerizes in two steps via a biphenyl radical ... [Pg.52]

During the course of metabolism, and particularly during phase I reactions, reactive intermediates that are much more toxic than the parent compound may be produced. Thus xenobiotic metabolism may be either a detoxication or an activation process. [Pg.201]

Cl- + CH4 -> HC1 + H3C-H3C- + Cl2 -> CH3C1 + Clin chain polymerization reactions, reactive intermediates of the same types, generated in successive steps or cycles of steps, differ in relative molecular mass, as in... [Pg.45]

Adapted from [9], particularly Chapter 1. These reactions can also occur in the kidney, intestinal tract, and plasma. Typical mechanisms are illustrated for some of the reactions. Reactive intermediates are enclosed in brackets. [Pg.208]

Little RD and Moeller KD (2002) Organic Electrochemistry as a Tool for Synthesis Umpolung Reactions, Reactive Intermediates, and the Design of New Synthetic Methods. The Electrochemical Society, Interface. [Pg.4976]

Keywords Bioisostere Cyclobutenone Electrocyclic reaction Reactive intermediate Squaric acid... [Pg.2]

Scheme 11.12 Reaction, reactive intermediates and proposed catal3ftic cycle for a copper-catal5 d CDC reaction. Scheme 11.12 Reaction, reactive intermediates and proposed catal3ftic cycle for a copper-catal5 d CDC reaction.
As we have just seen the rate determining intermediate m the reaction of tert butyl alco hoi with hydrogen chloride is the carbocation (CH3)3C Convincing evidence from a variety of sources tells us that carbocations can exist but are relatively unstable When carbocations are involved m chemical reactions it is as reactive intermediates formed slowly m one step and consumed rapidly m the next one... [Pg.160]

The free radicals that we usually see in carbon chemistry are much less stable than these Simple alkyl radicals for example require special procedures for their isolation and study We will encounter them here only as reactive intermediates formed m one step of a reaction mechanism and consumed m the next Alkyl radicals are classified as primary secondary or tertiary according to the number of carbon atoms directly attached to the carbon that bears the unpaired electron... [Pg.168]

Both steps m this general mechanism are based on precedent It is called elec trophilic addition because the reaction is triggered by the attack of an acid acting as an electrophile on the rr electrons of the double bond Using the two rr electrons to form a bond to an electrophile generates a carbocation as a reactive intermediate normally this IS the rate determining step... [Pg.236]

Allylic carbocations and allylic radicals are conjugated systems involved as reactive intermediates m chemical reactions The third type of conjugated system that we will examine conjugated dienes, consists of stable molecules... [Pg.398]

Benzyne is formed as a reactive intermediate in the reaction of aryl halides with very strong bases such as potassium amide... [Pg.1277]

Cation (Section 1 2) Positively charged ion Cellobiose (Section 25 14) A disacchande in which two glu cose units are joined by a 3(1 4) linkage Cellobiose is oh tamed by the hydrolysis of cellulose Cellulose (Section 25 15) A polysaccharide in which thou sands of glucose units are joined by 3(1 4) linkages Center of symmetry (Section 7 3) A point in the center of a structure located so that a line drawn from it to any element of the structure when extended an equal distance in the op posite direction encounters an identical element Benzene for example has a center of symmetry Cham reaction (Section 4 17) Reaction mechanism m which a sequence of individual steps repeats itself many times usu ally because a reactive intermediate consumed m one step is regenerated m a subsequent step The halogenation of alkanes is a chain reaction proceeding via free radical intermediates... [Pg.1278]

Chain reactions do not go on forever. The fog may clear and the improved visibility ends the succession of accidents. Neutron-scavenging control rods may be inserted to shut down a nuclear reactor. The chemical reactions which terminate polymer chain reactions are also an important part of the polymerization mechanism. Killing off the reactive intermediate that keeps the chain going is the essence of these termination reactions. Some unusual polymers can be formed without this termination these are called living polymers. [Pg.346]

The kind of reaction which produces a dead polymer from a growing chain depends on the nature of the reactive intermediate. These intermediates may be free radicals, anions, or cations. We shall devote most of this chapter to a discussion of the free-radical mechanism, since it readily lends itself to a very general treatment. The discussion of ionic intermediates is not as easily generalized. [Pg.346]

Dichloroacetic acid [79-43-6] (CI2CHCOOH), mol wt 128.94, C2H2CI2O2, is a reactive intermediate in organic synthesis. Physical properties are mp 13.9°C, bp 194°C, density 1.5634 g/mL, and refractive index 1.4658, both at 20°C. The Hquid is totally miscible in water, ethyl alcohol, and ether. Dichloroacetic acid K = 5.14 X 10 ) is a stronger acid than chloroacetic acid. Most chemical reactions are similar to those of chloroacetic acid, although both chlorine... [Pg.88]

Much of the chloroacetyl chloride produced is used captively as a reactive intermediate. It is useful in many acylation reactions and in the production of adrenalin [51-43-4] diazepam [439-15-5] chloroacetophenone [532-27-4] chloroacetate esters, and chloroacetic anhydride [541-88-8]. A major use is in the production of chloroacetamide herbicides (3) such as alachlor [15972-60-8]. [Pg.89]

The mechanism of the polycondensation reaction remains unclear. A vanety of possible reactive intermediates have been suggested, including sdyl radicals and sdyl anions. An anionic propagation mechanism (100,101,103) has been strongly suggested, although the case is by no means setded (104). Other Synthetic Methods. [Pg.262]

A shippable but somewhat less reactive form of diketene is its acetone adduct, 2,2,6-trimethyl-4JT-l,3-dioxin-4-one (15) (103,104). Thermolysis of this safer to handle compound provides acetylketene, a reactive intermediate that can be used for acetoacetylation and cycloaddition reactions. The diketene—acetone adduct as weH as / fZ-butylaceto acetate [1694-31 -1] (also used for aceto acetylations by the trans aceto acetylation reaction) (130), are offered commercially. [Pg.479]

Chemical Properties. Lignin is subject to oxidation, reduction, discoloration, hydrolysis, and other chemical and enzymatic reactions. Many ate briefly described elsewhere (51). Key to these reactions is the ability of the phenolic hydroxyl groups of lignin to participate in the formation of reactive intermediates, eg, phenoxy radical (4), quinonemethide (5), and phenoxy anion (6) ... [Pg.142]

The bimodal profile observed at low catalyst concentration has been explained by a combination of two light generating reactive intermediates in equihbrium with a third dark reaction intermediate which serves as a way station or delay in the chemiexcitation processes. Possible candidates for the three intermediates include those shown as "pooled intermediates". At high catalyst concentration or in imidazole-buffered aqueous-based solvent, the series of intermediates rapidly attain equihbrium and behave kineticaHy as a single kinetic entity, ie, as pooled intermediates (71). Under these latter conditions, the time—intensity profile (Fig. 2) displays the single maximum as a biexponential rise and fall of the intensity which is readily modeled as a typical irreversible, consecutive, unimolecular process ... [Pg.267]

Peroxyoxalate chemiluminescence is the most efficient nonenzymatic chemiluminescent reaction known. Quantum efficiencies as high as 22—27% have been reported for oxalate esters prepared from 2,4,6-trichlorophenol, 2,4-dinitrophenol, and 3-trif1uoromethy1-4-nitropheno1 (6,76,77) with the duorescers mbrene [517-51-1] (78,79) or 5,12-bis(phenylethynyl)naphthacene [18826-29-4] (79). For most reactions, however, a quantum efficiency of 4% or less is more common with many in the range of lO " to 10 ein/mol (80). The inefficiency in the chemiexcitation process undoubtedly arises from the transfer of energy of the activated peroxyoxalate to the duorescer. The inefficiency in the CIEEL sequence derives from multiple side reactions available to the reactive intermediates in competition with the excited state producing back-electron transfer process. [Pg.267]

Ghloromethylation. The reactive intermediate, 1-chloromethylnaphthalene [86-52-2] has been produced by the reaction of naphthalene in glacial acetic acid and phosphoric acid with formaldehyde and hydrochloric acid. Heating of these ingredients at 80—85°C at 101.3 kPa (1 atm) with stirring for ca 6 h is required. The potential ha2ard of such chloromethylation reactions, which results from the possible production of small amounts of the powerhil carcinogen methyl chloromethyl ether [107-30-2J, has been reported (21). [Pg.483]

Novolaks. Novolak resins are typically cured with 5—15% hexa as the cross-linking agent. The reaction mechanism and reactive intermediates have been studied by classical chemical techniques (3,4) and the results showed that as much as 75% of nitrogen is chemically bound. More recent studies of resin cure (42—45) have made use of tga, dta, gc, k, and nmr (15). They confirm that the cure begins with the formation of benzoxazine (12), progresses through a benzyl amine intermediate, and finally forms (hydroxy)diphenyknethanes (DPM). [Pg.298]

Quinone Methides. The reaction between aldehydes and alkylphenols can also be base-cataly2ed. Under mild conditions, 2,6-DTBP reacts with formaldehyde in the presence of a base to produce the methylol derivative (22) which reacts further with base to eliminate a molecule of water and form a reactive intermediate, the quinone methide (23). Quinone methides undergo a broad array of transformations by way of addition reactions. These molecules ate conjugated homologues of vinyl ketones, but are more reactive because of the driving force associated with rearomatization after addition. An example of this type of addition is between the quinone methide and methanol to produce the substituted ben2yl methyl ether (24). [Pg.61]

General amine chemistry is appHcable to fatty amines. Many chemical reactions using fatty amines as reactive intermediates are mn on an industrial scale to produce a wide range of important products. Important industrial reactions are as follows. [Pg.219]

Direct Process. The preparation of organosilanes by the direct process, first reported in 1945, is the primary method used commercially (142,143). Organosilanes in the United States, France, Germany, Japan, and the CIS are prepared by this method, including CH SiHCl, (CH2)2SiHCl, and C2H SiHCl2. Those materials are utilized as polymers and reactive intermediates. The synthesis involves the reaction of alkyl haUdes, eg, methyl and ethyl chloride, with siUcon metal or siUcon alloys in a fluidized bed at 250—450°C ... [Pg.29]


See other pages where Reaction reactive intermediates is mentioned: [Pg.36]    [Pg.393]    [Pg.550]    [Pg.36]    [Pg.393]    [Pg.550]    [Pg.307]    [Pg.203]    [Pg.220]    [Pg.311]    [Pg.159]    [Pg.201]    [Pg.1163]    [Pg.307]    [Pg.430]    [Pg.508]    [Pg.236]    [Pg.101]    [Pg.184]    [Pg.226]    [Pg.249]    [Pg.423]    [Pg.505]   
See also in sourсe #XX -- [ Pg.9 , Pg.14 ]




SEARCH



Intermediate reactivity

Intermediates, reactive

Reactivation reaction

Reactivity reaction

© 2024 chempedia.info